>
网站首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们
最新消息:
基于基因芯片的结肠癌预后相关差异表达LncRNAs的筛选及临床验证
作者:翟明慧1  袁殿宝1  高灵娟2  成丹蕾1 
单位:1. 河北北方学院附属第一医院 肿瘤内科, 河北 张家口 075000;
2. 陆军第八十一集团军医院 肿瘤内科, 河北 张家口 075000
关键词:结肠癌 预后 基因芯片 长链非编码核糖核酸 
分类号:R735.3
出版年·卷·期(页码):2025·44·第三期(370-378)
摘要:

目的: 基于基因芯片技术筛选结肠癌预后相关差异表达长链非编码核糖核酸(LncRNAs),并进行临床验证。方法: 选取2020年6月至2023年6月于医院就诊的321例结肠癌患者,其中34例用于筛选差异表达LncRNAs,287例用于验证。34例患者术后1年有9例预后不良,纳入A组,其余25例纳入B组。采用基因芯片技术检测A、B组肿瘤组织中差异表达LncRNAs;构建结肠癌预后竞争性内源核糖核酸(ceRNA)网络,并进行基因本体论(GO)及京都基因和基因组百科全书(KEGG)富集分析;经LASSO回归模型筛选结肠癌预后相关LncRNAs,将LASSO回归筛选出的变量纳入多因素Cox回归模型,分析结肠癌预后的影响因素。结果: 筛选出A、B组肿瘤组织样本中差异表达的LncRNAs共227个,其中上调LncRNAs 162个,下调LncRNAs 65个;构建的ceRNA网络共包括181个节点(93个LncRNA节点、29个miRNA节点、59个mRNA节点)和603个边缘;GO富集分析显示,差异表达LncRNA的功能集中在细胞对化学应激、氧化应激和外部刺激的反应,包括转录调节复合物、RNA聚合酶Ⅱ转录调节复合物和核外膜,DNA结合转录因子的结合位点、R-SMAD结合和Ⅱ型RNA聚合酶激活的转录因子结合;KEGG富集分析差异表达LncRNA的功能主要集中在白介素-17(IL-17)信号通路、肿瘤坏死因子(TNF)信号通路、催产素信号通路和核转录因子-κB(NF-κB)信号通路;LASSO回归筛选出11个与结肠癌预后相关的变量,分别为LncRNA NEAT1、LncRNA PCAT1、LncRNA CASC11、LncRNA CCAT1、LncRNA PCAT6、LncRNA ZEB1-AS1、LncRNA PSMA3-AS1、LncRNA AC005062.1、LncRNA GAS5、LncRNA MEG3、LncRNA USP30-AS1;Cox回归分析结果显示,TNM分期、LncRNA CASC11、LncRNA CCAT1、LncRNA PCAT6是结肠癌预后的危险因素(P<0.05),LncRNA GAS5、LncRNA MEG3是保护因素(P<0.05)。结论: 在结肠癌不同预后患者中筛选出差异表达的Lnc RNAs共227个,成功构建ceRNA网络,GO富集主要集中在细胞对化学应激、氧化应激和外部刺激的反应等,KEGG富集主要集中在IL-17信号通路、TNF信号通路、催产素信号通路和NF-κB信号通路,经临床验证LncRNA CASC11、LncRNA CCAT1、LncRNA PCAT6是结肠癌预后的危险因素,LncRNA GAS5、LncRNA MEG3是保护因素。

Objective: To screen and clinically validate prognosis-related differentially expressed long non-coding RNAs(LncRNAs) in colon cancer using gene chip technology. Methods: A cohort of 321 colon cancer patients treated between June 2020 and June 2023 was selected for this study. Among them, 34 patients were used for screening differentially expressed LncRNAs, while 287 patients were used for subsequent validation. Of the 34 patients, 9 who experienced poor prognosis one year post-surgery were categorized into Group A, with the remaining 25 patients were assigned to Group B. Gene chip technology was employed to detect differentially expressed LncRNAs in the tumor tissues of Groups A and B. A competing endogenous RNA(ceRNA) network was constructed, followed by Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses. Prognosis-related LncRNAs were screened using the LASSO regression model, and the variables identified were included in a multivariate Cox regression model to analyze factors affecting the prognosis of colon cancer. Results: A total of 227 differentially expressed LncRNAs were screened between Groups A and B, with 162 upregulated and 65 downregulated LncRNAs. The constructed ceRNA network comprised 181 nodes(93 LncRNA nodes, 29 miRNA nodes, and 59 mRNA nodes) and 603 edges. GO enrichment analysis revealed that the differentially expressed LncRNAs were primarily involved in cellular responses to chemical stress, oxidative stress, and external stimuli, including transcriptional regulatory complexes, RNA polymerase Ⅱ transcription regulatory complexes, and the nuclear outer membrane. These LncRNAs were also involved in DNA-binding transcription factor binding, R-SMAD binding, and RNA polymerase Ⅱ-activated transcription factor binding. KEGG enrichment analysis indicated that the differentially expressed LncRNAs were mainly concentrated in the IL-17 signaling pathway, TNF signaling pathway, oxytocin signaling pathway, and NF-κB signaling pathway. LASSO regression identified 11 variables associated with colon cancer prognosis, including LncRNA NEAT1, LncRNA PCAT1, LncRNA CASC11, LncRNA CCAT1, LncRNA PCAT6, LncRNA ZEB1-AS1, LncRNA PSMA3-AS1, LncRNA AC005062.1, LncRNA GAS5, LncRNA MEG3, and LncRNA USP30-AS1. Cox regression analysis revealed that TNM stage, LncRNA CASC11, LncRNA CCAT1, and LncRNA PCAT6 were risk factors for colon cancer prognosis(P<0.05), whereas LncRNA GAS5 and LncRNA MEG3 were protective factors(P<0.05). Conclusion: This study identify 227 differentially expressed LncRNAs in colon cancer patients with varying prognoses. A ceRNA network is successfully constructed, with GO enrichment analysis highlights cellular responses to chemical stress, oxidative stress, and external stimuli, while KEGG enrichment analysis points to significant involvement in the IL-17, TNF, oxytocin, and NF-κB signaling pathways. Clinical validation indicates that LncRNA CASC11, LncRNA CCAT1, and LncRNA PCAT6 are risk factors for colon cancer prognosis, while LncRNA GAS5 and LncRNA MEG3 serve as protective factors.

参考文献:

[1] CHEN S, CAO Z, PRETTNER K, et al.Estimates and projections of the global economic cost of 29 cancers in 204 countries and territories from 2020 to 2050[J].JAMA Oncol, 2023, 9(4):465-472.
[2] VOGEL J D, FELDER S I, BHAMA A R, et al.The American society of colon and rectal surgeons clinical practice guidelines for the management of colon cancer[J].Dis Colon Rectum, 2022, 65(2):148-177.
[3] 戴彦苗, 彭惠平, 王杰, 等.血浆中ZNF582甲基化在结直肠癌早期诊断中的可行性研究[J].东南大学学报(医学版), 2023, 42(2):252-256.
[4] FANG D, OU X, SUN K, et al.m6A modification-mediated lncRNA TP53TG1 inhibits gastric cancer progression by regulating CIP2A stability[J].Cancer Sci, 2022, 113(12):4135-4150.
[5] WU J, XU S, LI W, et al.lncRNAs as hallmarks for individualized treatment of gastric cancer[J].Anticancer Agents Med Chem, 2022, 22(8):1440-1457.
[6] MA W, HU J.The linear ANRIL transcript P14AS regulates the NF-κB signaling to promote colon cancer progression[J].Mol Med, 2023, 29(1):162.
[7] TANG X, LIN Y, HE J, et al.Establishment and validation of a prognostic model based on HRR-related lncRNAs in colon adenocarcinoma[J].World J Surg Oncol, 2022, 20(1):74.
[8] WANG H, WU Y, WANG Z, et al.The LncRNA FEZF1-AS1 promotes tumor proliferation in colon cancer by regulating the mitochondrial protein PCK2[J].Oncol Res, 2022, 29(3):201-215.
[9] 中华人民共和国国家卫生健康委员会.中国结直肠癌诊疗规范(2020版)[J].中华消化外科杂志, 2020, 19(6):563-588.
[10] BAKER K J, BRINT E, HOUSTON A.Transcriptomic and functional analyses reveal a tumour-promoting role for the IL-36 receptor in colon cancer and crosstalk between IL-36 signalling and the IL-17/IL-23 axis[J].Br J Cancer, 2023, 128(5):735-747.
[11] WANG X, CHEN D, GUO M, et al.Oxytocin alleviates colitis and colitis-associated colorectal tumorigenesis via noncanonical fucosylation[J].Research(Wash D C), 2024, 7:407.
[12] BAKSHI H A, QUINN G A, NASEF M M, et al.Crocin inhibits angiogenesis and metastasis in colon cancer via TNF-α/NF-κB/VEGF pathways[J].Cells, 2022, 11(9):1502.
[13] REN C, HAN X, LU C, et al.Ubiquitination of NF-κB p65 by FBXW2 suppresses breast cancer stemness, tumorigenesis, and paclitaxel resistance[J].Cell Death Differ, 2022, 29(2):381-392.
[14] LIN S C, LIAO Y C, CHEN P M, et al.Periostin promotes ovarian cancer metastasis by enhancing M2 macrophages and cancer-associated fibroblasts via integrin-mediated NF-κB and TGF-β2 signaling[J].J Biomed Sci, 2022, 29(1):109.
[15] 廖薇薇, 傅祥炜, 温必盛, 等.lncRNA CASC11靶向调控miR-146a-3p对结肠癌细胞增殖、侵袭的影响[J].华中科技大学学报(医学版), 2023, 52(6):803-809.
[16] 李方, 李延波, 聂佳.长链非编码RNA结肠癌相关转录因子1对肺腺癌细胞增殖和凋亡的调控作用及其机制[J].广西医学, 2022, 44(9):992-997.
[17] 闫江鹤, 李冰, 王作醒, 等.长链非编码RNA PCAT6在结肠癌中的表达及临床病理特征与预后的关系[J].中国现代普通外科进展, 2022, 25(3):225-227, 231.
[18] 刘少平, 梁群, 胡亚华, 等.血清lncRNA GAS5表达与结直肠癌血管生成的关系及其临床意义[J].临床消化病杂志, 2023, 35(5):386-390.
[19] 刘玉凤, 牛国超, 郑少华, 等.结肠恶性病变患者LncRNA MEG3、miR-31表达及与肿瘤相关基因、预后的关系[J].临床误诊误治, 2022, 35(7):55-59.

服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
提示:您还未登录,请登录!点此登录
您是第 501139 位访问者


copyright ©《东南大学学报(医学版)》编辑部
联系电话:025-83272481 83272483
电子邮件:
bjb@pub.seu.edu.cn

本系统由北京博渊星辰网络科技有限公司设计开发 技术支持电话:010-63361626

苏ICP备09058364