目的:探讨慢性阻塞性肺疾病急性加重期(AECOPD)合并呼吸衰竭患者的预后影响因素,并构建预测模型,为防范对策制定提供参考。方法:便利抽样法选择2022年3月至2024年5月在本院确诊并住院治疗的324例AECOPD合并呼吸衰竭患者,依据入院28 d预后划分为死亡组、生存组。通过二元Logistic回归模型确定AECOPD合并呼吸衰竭患者入院28 d死亡的影响因素,建立列线图预测模型。通过受试者工作特征(ROC)曲线评价模型区分度,校准曲线评价模型一致性,H-L检验评价模型拟合优度,决策曲线评价模型临床价值。结果:死亡组年龄、全身免疫炎症指数(SII)、超敏C反应蛋白/白蛋白值(HCAR)、动脉二氧化碳分压(PaCO2)高于生存组,酸碱度(pH)值低于生存组(P<0.05)。二元Logistic回归分析显示,年龄、SII、HCAR、PaCO2均为AECOPD合并呼吸衰竭患者入院28 d死亡的危险因素(P<0.05)。ROC曲线显示,列线图预测模型预测AECOPD合并呼吸衰竭患者入院28 d死亡的曲线下面积(AUC)为0.969,95%CI为0.946~0.993,预测敏感度为87.80%,特异度为95.05%,准确度为94.14%,区分度良好。校准曲线、H-L检验与决策曲线显示,列线图预测模型具有良好的一致性、拟合优度及较高临床获益。结论:AECOPD合并呼吸衰竭入院28 d死亡的预测因素包括年龄、SII、HCAR、PaCO2,依据上述因素构建的预测模型具有一定预测价值。 |
Objective: To investigate the prognostic factors for patients with acute exacerbation of chronic obstructive pulmonary disease(AECOPD) complicated by respiratory failure, and to construct a prediction model to provide reference for preventive strategies. Methods: A convenience sample of 324 patients diagnosed with AECOPD complicated by respiratory failure and hospitalized from March 2022 to May 2024 was selected. Patients were divided into death and survival groups based on 28-day prognosis after admission. A binary Logistic regression model was used to determine the influencing factors for 28-day mortality in AECOPD patients with respiratory failure. A nomogram prediction model was established. The discrimination was assessed using the receiver operating characteristic(ROC) curve, consistency was evaluated using a calibration curve, model's goodness of fit was evaluated using the Hosmer-Lemeshow test, and clinical utility was assessed using a decision curve. Results: The death group showed significantly higher age, systemic immune-inflammation index(SII), high-sensitivity C-reactive protein/albumin ratio(HCAR), and pressure of arterialcarbon dioxide(PaCO2), and lower acidity of alkalinity(pH) compared to the survival group(P<0.05). Binary Logistic regression analysis revealed that age, SII, HCAR, and PaCO2 were risk factors for 28-day mortality in AECOPD patients with respiratory failure(P<0.05). The ROC curve analysis demonstrated that the model had good discrimination in predicting 28-day mortality, with the area under the curve(AUC) of 0.969(95% CI 0.946-0.993), sensitivity of 87.80%, specificity of 95.05%, and accuracy of 94.14%. Calibration curves, Hosmer-Lemeshow test and decision curves indicated good consistency, goodness of fit and high clinical benefit of the nomogram prediction model. Conclusion: Age, SII, HCAR, and PaCO2 are predictive factors for 28-day mortality in AECOPD patients with respiratory failure. The prediction model constructed based on these factors has certain predictive value. |
[1] HARTLEY T,LANE N D,STEER J,et al.The noninvasive ventilation outcomes(NIVO) score:prediction of in-hospital mortality in exacerbations of COPD requiring assisted ventilation[J].Eur Respir J,2021,58(2):2004042.
[2] LIAO K M,LIU C F,CHEN C J,et al.Machine learning approaches for predicting acute respiratory failure,ventilator dependence,and mortality in chronic obstructive pulmonary disease[J].Diagnostics(Basel),2021,11(12):2396.
[3] 凌玲,黄祺,汤金梅,等.AECOPD老年患者呼吸衰竭的发生情况及其影响因素研究[J].现代医学,2020,48(12):1589-1593.
[4] LEE M K,CHOI J,PARK B,et al.High flow nasal cannulae oxygen therapy in acute-moderate hypercapnic respiratory failure[J].Clin Respir J,2018,12(6):2046-2056.
[5] PENG J C,GONG W W,WU Y,et al.Development and validation of a prognostic nomogram among patients with acute exacerbation of chronic obstructive pulmonary disease in intensive care unit[J].BMC Pulm Med,2022,22(1):306.
[6] 陈苏,陈碧,高立艳,等.列线图对慢性阻塞性肺疾病急性加重合并高碳酸血症患者院内死亡率的预测研究[J].现代医学,2022,50(6):742-747.
[7] 中华医学会呼吸病学分会慢性阻塞性肺疾病学组,中国医师协会呼吸医师分会慢性阻塞性肺疾病工作委员会.慢性阻塞性肺疾病诊治指南(2021年修订版)[J].中华结核和呼吸杂志,2021,44(3):170-205.
[8] 王慧,杨淼,任慧敏,等.慢性阻塞性肺疾病急性加重患者营养风险的评估及其对预后的预测价值[J].河北医科大学学报,2021,42(8):876-880.
[9] 佟媛旭,赵君,卫飞燕,等.AECOPD并重度呼吸衰竭患者有创机械通气的治疗时机探讨及其预后的影响因素分析[J].现代生物医学进展,2023,23(9):1651-1655.
[10] 唐兰,于佳,梅凯.肺部CT与NLR、ALB联合预测老年COPD合并Ⅱ型呼吸衰竭病人临床预后的价值[J].实用老年医学,2023,37(2):164-167.
[11] 王鹏程.探究SPO2、SII、PLR、NLR在预测AECOPD患者全因住院死亡率中的价值[D].青岛:青岛大学,2024.
[12] EL-GAZZAR A G,KAMEL M H,ELBAHNASY O K M,et al.Prognostic value of platelet and neutrophil to lymphocyte ratio in COPD patients[J].Expert Rev Respir Med,2020,14(1):111-116.
[13] 王宏俊,褚庆霞,马大文,等.炎症指标及NLR、PLR、红细胞分布宽度水平检测对慢性阻塞性肺疾病急性加重期合并Ⅱ型呼吸衰竭患者预后的预测价值[J].中国医药导报,2022,19(17):155-158.
[14] 刘向耿,符秋红,陈洋.C反应蛋白、白蛋白比值与多评分系统对脓毒症严重程度和预后的评估价值比较[J].内科急危重症杂志,2020,26(4):301-303.
[15] 何君君.术后第1天超敏C-反应蛋白/白蛋白比值对结肠癌术后短期并发症的预测价值[J].中国卫生检验杂志,2023,33(13):1609-1612.
[16] 王景,朱述阳,朱洁晨,等.血清超敏C反应蛋白/白蛋白比值预测慢性阻塞性肺疾病急性加重合并呼吸衰竭患者早期再入院的临床价值[J].科学技术与工程,2019,19(17):128-132.
[17] 李静,毕煜玲,陈敏.急性加重期COPD合并呼吸衰竭患者hs-CRP/Alb、CysC与预后的相关性分析[J].中国急救复苏与灾害医学杂志,2020,15(3):311-314.
[18] 李文文,任昆仑,于佳,等.三种营养评估方法对老年慢性阻塞性肺疾病急性加重合并呼吸衰竭患者预后评估的比较研究[J].中华结核和呼吸杂志,2020,43(1):54-57.
[19] 孙爱华,赵艳秋,王继灵.老年慢性阻塞性肺部疾病急性加重期患者住院死亡的危险因素及预后[J].基础医学与临床,2022,42(9):1414-1418.
[20] YAO C,WANG L,SHI F,et al.Optimized combination of circulating biomarkers as predictors of prognosis in AECOPD patients complicated with heart failure[J].Int J Med Sci,2021,18(7):1592-1599.
[21] 宋宁,吴先红,陈浩,等.基于危急值构建慢性阻塞性肺疾病急性加重患者死亡风险的预测模型[J].重庆医学,2023,52(12):1806-1811.
[22] 刘思杰,孙伟,王晶,等.影响慢性阻塞性肺疾病急性加重合并呼吸衰竭患者短期预后的危险因素探讨[J].国际呼吸杂志,2022,42(24):1902-1908.
[23] CHEN L,CHEN L,ZHENG H,et al.Emergency admission parameters for predicting in-hospital mortality in patients with acute exacerbations of chronic obstructive pulmonary disease with hypercapnic respiratory failure[J].BMC Pulm Med,2021,21(1):258. |