Objective: By using CiteSpace to conduct the visual analysis of the domestic research of the postoperative complications prediction model, and analyze the research status of the domestic postoperative complications prediction model, so as to provide reference and direction for the future research of the domestic postoperative complications prediction model. Methods: This paper apply CiteSpace knowledge graph visualization tool, based on the CNKI from January 1, 2014 to June 27, 2024 for postoperative complications prediction model research literature, counted annual publications, drew the author cooperation network map, and according to the keywords collinear, clustering, timing, emergent map of postoperative complications research model under the topic hot analysis, explored the evolution of the subject research process, analyzed the development trend and significance. Results: The map and table analysis using CiteSpace showed, the study of postoperative complication prediction model would become a popular research direction in the future. Conclusion: With different diseases, different surgical methods, different characteristics of the machine learning to build refined postoperative complications prediction model or will become a research hotspot. Researchers should base on various machine learning methods to conduct multicenter, large samples, high quality prospective study, and try to apply the prediction model to clinical practice to build localization, individualized postoperative complications prediction model. |
[1] TANG B,WANG X T,CHEN W J,et al.Experts consensus on the management of delirium in critically ill patients[J].Zhonghua Nei Ke Za Zhi,2019(2):108-118.
[2] TEVIS S E,KENNEDY G D.Postoperative complications and implications on patient-centered outcomes[J].J Surg Res,2013,181(1):106-113.
[3] ENDO I,KUMAMOTO T,MATSUYAMA R.Postoperative complications and mortality:are they unavoidable?[J].Ann Gastroenterol Surg,2017,1(3):160-163.
[4] COOK J L.Surgical complications[J].Dermatologic Therapy,2011,24(6):513-514.
[5] BHATTACHARYA K,BHATTACHARYA N.Surgeon's guilt after postoperative complication[J].Pol Przegl Chir 2022,94(4):45-48.
[6] MASON J A,FRIEDMAN E E,ROJAS J C,et al.No-show prediction model performance among people with hiv:external validation study[J].J Med Internet Res,2023,25:e43277.
[7] 陈悦,陈超美,刘则渊,等.CiteSpace知识图谱的方法论功能[J].科学学研究,2015,33(2):242-253.
[8] 张紫卉,杨小会,胡庆元,等.基于CiteSpace的国内人工智能医疗器械研究的可视化分析[J].中国医疗设备,2024,39(6):88-95.
[9] 孙松蔚,高玉芳,王刚,等.中长静脉导管研究热点的可视化分析[J].中华急危重症护理杂志,2022,3(1):67-72.
[10] 白胶胶,张欢,侯妍,等.基于CiteSpace可视化分析国内脊髓损伤并发低钠血症的研究热点与趋势[J].现代医学,2024,52(1):121-126.
[11] 屈睿升,宋润泽,刘宝坤,等.基于CiteSpace的近十年下腔静脉滤器领域文献计量可视化分析[J].临床放射学杂志,2022,41(2):334-339.
[12] LIU F,HUANG C,XU Z,et al.Morbidity and mortality of laparoscopic vs open total gastrectomy for clinical stageⅠgastric cancer:the CLASS02 multicenter randomized clinical trial[J].JAMA Oncol,2020,6(10):1590-1597.
[13] TOKUNAGA M,KUROKAWA Y,MACHIDA R,et al.Impact of postoperative complications on survival outcomes in patients with gastric cancer:exploratory analysis of a randomized controlled JCOG1001 trial[J].Gastric Cancer,2021,24(1):214-223.
[14] 彭一耘,杨国渊,黄亚龙 等.临床预测模型在胃癌术后并发症中应用的研究进展[J].中国普外基础与临床杂志,2024(5):619-624.
[15] ZHOU Z R,WANG W W,LI Y,et al .In-depth mining of clinical data:the construction of clinical prediction model with R[J].Ann Transl Med,2019,7(23):796.
[16] WILMORE D W,KEHLET H.Management of patients in fast track surgery[J].BMJ,2001,322(7284):473-476.
[17] NICHOLSON A,LOWE M C,et al.Systematic review and meta-analysis of enhanced recovery programmes in surgical patients[J].Br J Surg,2014,101(3):172-188.
[18] CHOI R Y,COYNER A S,KALPATHY-CRAMER J,et al.Introduction to machine learning,neural networks,and deep learning[J].Transl Vis Sci Technol,2020,9(2):14.
[19] DEO R C.Machine learning in medicine[J].Circulation,2015,132(20):1920-1930.
[20] HANDELMAN G S,KOK H K,CHANDRA R V,et al.eDoctor:machine learning and the future of medicine[J].J Int Med,2018,284(6):603-619.
[21] 浦洁,周庆,侯小会,等.机器学习在构建危重患者病情变化预测模型中的研究进展[J].当代护士,2023,30(4):31-34.
[22] MATTISON M L P.Delirium[J].Ann Intern Med,2020,173(7):ITC49-ITC64.
[23] 郭畔旭,阳晓娟,马跃,等.基于机器学习的术后患者谵妄风险预测模型研究进展[J].当代护士,2024,31(18):11-14. |