>
网站首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们
最新消息:
二甲双胍对脓毒症心肌损伤保护机制的研究进展
作者:田勇1 2  周颖2  古雍翔2  杨国辉2 
单位:1. 铜仁市人民医院 重症医学科, 贵州 铜仁 554300;
2. 贵州医科大学附属医院 内科重症监护室, 贵州 贵阳 550004
关键词:脓毒症 脓毒症心肌损伤 二甲双胍 保护机制 综述 
分类号:R961
出版年·卷·期(页码):2024·43·第四期(623-628)
摘要:

脓毒症在重症加强护理病房的患者中发病率、死亡率及医疗费用均高。脓毒症心肌损伤(sepsis-induced myocardial injure,SIMI)是脓毒症的严重并发症之一,其约占脓毒症患者的一半,目前尚无理想的治疗药物且其致病机制尚未完全清楚。近年研究表明,二甲双胍对SIMI具有重要的保护作用,但其具体作用机制尚未阐明。本文作者综述了二甲双胍对SIMI中自噬、线粒体、肠道微生态、氧化应激、细胞凋亡及炎症反应等方面的调控作用,旨在为二甲双胍对SIMI的研究和治疗提供一定的思路和参考。

参考文献:

[1] WANG W,LIU C F.Sepsis heterogeneity[J].World J Pediatr,2023,19(10):919-927.
[2] HOLLENBERG S M,SINGER M.Pathophysiology of sepsis-induced cardiomyopathy[J].Nat Rev Cardiol,2021,18(6):424-434.
[3] LI Y,ZHANG L,ZHANG P,et al.Dehydrocorydaline protects against sepsis-induced myocardial injury through modulating the TRAF6/NF-κB pathway[J].Front Pharmacol,2021,12:709604.
[4] 杭成文,崔鸣.脓毒症致心肌损伤模型的研究进展[J].中国心血管杂志,2020(5):485-488.
[5] ZHOU B,ZHANG J,CHEN Y,et al.Puerarin protects against sepsis-induced myocardial injury through AMPK-mediated ferroptosis signaling[J].Aging (Albany NY),2022,14(8):3617-3632.
[6] LIU C,ZOU Q,TANG H,et al.Melanin nanoparticles alleviate sepsis-induced myocardial injury by suppressing ferroptosis and inflammation[J].Bioact Mater,2023,24:313-321.
[7] PEI Z,YAO W,WANG S,et al.Regulation of sirtuins in sepsis-induced myocardial damage:the underlying mechanisms for cardioprotection[J].Front Biosci (Landmark Ed),2024,29(2):54.
[8] FORETZ M,GUIGAS B,VIOLLET B.Metformin:update on mechanisms of action and repurposing potential[J].Nat Rev Endocrinol,2023,19(8):460-476.
[9] ISMAIL HASSAN F,DIDARI T,KHAN F,et al.A review on the protective effects of metformin in sepsis-induced organ failure[J].Cell J,2020,21(4):363-370.
[10] 周慧琳,危安.自噬在肝癌治疗中作用的研究进展[J].现代医学,2023,51(5):693-698.
[11] LIU C,LIU Y,CHEN H,et al.Myocardial injury:where inflammation and autophagy meet[J].Burns Trauma,2023,11:tkac062.
[12] TANG R,JIA L,LI Y,et al.Narciclasine attenuates sepsis-induced myocardial injury by modulating autophagy[J].Aging (Albany NY),2021,13(11):15151-15163.
[13] WANG X,XIE D,DAI H,et al.Clemastine protects against sepsis-induced myocardial injury in vivo and in vitro[J].Bioengineered,2022,13(3):7134-7146.
[14] LU G,WU Z,SHANG J,et al.The effects of metformin on autophagy[J].Biomed Pharmacother,2021,137:111286.
[15] TURCO E,FRACCHIOLLA D,MARTENS S.Recruitment and activation of the ULK1/Atg1 kinase complex in selective autophagy[J].J Mol Biol,2020,432(1):123-134.
[16] WANG Y,AN H,LIU T,et al.Metformin improves mitochondrial respiratory activity through activation of AMPK[J].Cell Rep,2019,29(6):1511-1523.
[17] 田勇,周颖,古雍翔,等.二甲双胍诱导心肌细胞自噬对脓毒症小鼠心肌损伤的保护机制[J].安徽医科大学学报,2024,59(1):92-98.
[18] 高婷,陈忠.二甲双胍对脂多糖诱导的大鼠心肌细胞H9C2损伤的保护机制[J].南京医科大学学报(自然科学版),2019,39(9):1298-1303.
[19] GAO Y,LIU J,LI K,et al.Metformin alleviates sepsis-associated myocardial injury by enhancing AMP-activated protein kinase/mammalian target of rapamycin signaling pathway-mediated autophagy[J].J Cardiovasc Pharmacol,2023,82(4):308-317.
[20] 周颖,杨国辉.自噬在脓毒症心肌功能障碍发病机制中的作用研究进展[J].疑难病杂志,2023,22(7):776-781.
[21] HUANG K Y,QUE J Q,HU Z S,et al.Metformin suppresses inflammation and apoptosis of myocardiocytes by inhibiting autophagy in a model of ischemia-reperfusion injury[J].Int J Biol Sci,2020,16(14):2559-2579.
[22] MILLER W D,KESKEY R,ALVERDY J C.Sepsis and the microbiome:a vicious cycle[J].J Infect Dis,2021,223(12 Suppl 2):264-269.
[23] HAAK B W,PRESCOTT H C,WIERSINGA W J.Therapeutic potential of the gut microbiota in the prevention and treatment of sepsis[J].Front Immunol,2018,9:2042.
[24] PAVLO,KAMYSHNA I,KAMYSHNYI A.Effects of metformin on the gut microbiota:a systematic review[J].Mol Metab,2023,77:101805.
[25] LIANG H,SONG H,ZHANG X,et al.Metformin attenuated sepsis-related liver injury by modulating gut microbiota[J].Emerg Microbes Infect,2022,11(1):815-828.
[26] ZHAO H,LYU Y,ZHAI R,et al.Metformin mitigates sepsis-related neuroinflammation via modulating gut microbiota and metabolites[J].Front Immunol,2022,13:797312.
[27] WAN Y,WANG S,NIU Y,et al.Effect of metformin on sepsis-associated acute lung injury and gut microbiota in aged rats with sepsis[J].Front Cell Infect Microbiol,2023,13:1139436.
[28] XIAO K,SUN Y,SONG J,et al.Gut microbiota involved in myocardial dysfunction induced by sepsis[J].Microb Pathog,2023,175:105984.
[29] BI C F,LIU J,YANG L S,et al.Research progress on the mechanism of sepsis induced myocardial injury[J].J Inflamm Res,2022,15:4275-4290.
[30] LIN H,AO H,GUO G,et al.The role and mechanism of metformin in inflammatory diseases[J].J Inflamm Res,2023,16:5545-5564.
[31] LIU G,WU K,ZHANG L,et al.Metformin attenuated endotoxin-induced acute myocarditis via activating AMPK[J].Int Immunopharmacol,2017,47:166-172.
[32] DIDARI T,HASSANI S,BAEERI M,et al.Short-term effects of metformin on cardiac and peripheral blood cells following cecal ligation and puncture-induced sepsis[J].Drug Res (Stuttg),2021,71(5):257-264.
[33] ZHANG M,SUN W,DU J,et al.Protective effect of metformin on sepsis myocarditis in zebrafish[J].Dose Response,2020,18(3):1559325820938543.
[34] KHODADADI M,JAFARI-GHARABAGHLOU D,ZARGHAMI N.An update on mode of action of metformin in modulation of meta-inflammation and inflammaging[J].Pharmacol Rep,2022,74(2):310-322.
[35] SONG H,ZHANG X,ZHAI R,et al.Metformin attenuated sepsis-associated liver injury and inflammatory response in aged mice[J].Bioengineered,2022,13(2):4598-4609.
[36] HU S,HUANG M,MAO S,et al.Serinc2 deficiency exacerbates sepsis-induced cardiomyopathy by enhancing necroptosis and apoptosis[J].Biochem Pharmacol,2023,218:115903.
[37] LI M,GOU Y,YU H,et al.Mechanism of metformin on LPS-induced bacterial myocarditis[J].Dose Response,2019,17(2):1559325819847409.
[38] 梅静,喇宏玲,徐桂萍.自噬激活在抑制丙泊酚诱导的神经元凋亡中的作用[J].安徽医科大学学报,2022,57(10):1552-1558.
[39] ZOU R,TAO J,QIU J,et al.DNA-PKcs promotes sepsis-induced multiple organ failure by triggering mitochondrial dysfunction[J].J Adv Res,2022,41:39-48.
[40] OSORIO-LLANES E,VILLAMIZAR-VILLAMIZAR W,OSPINO GUERRA M C,et al.Effects of metformin on ischemia/reperfusion injury:new evidence and mechanisms[J].Pharmaceuticals (Basel),2023,16(8):1121.
[41] YANG H,ZHANG Z.Sepsis-induced myocardial dysfunction:the role of mitochondrial dysfunction[J].Inflamm Res,2021,70(4):379-387.
[42] SUPINSKI G S,SCHRODER E A,CALLAHAN L A.Mitochondria and critical illness[J].Chest,2020,157(2):310-322.
[43] 于俪尉,赵志伶,么改琦.线粒体在脓毒症发病机制中的研究进展[J].中华危重病急救医学,2023,35(6):669-672.
[44] WU S,ZOU M H.AMPK,Mitochondrial function,and cardiovascular disease[J].Int J Mol Sci,2020,21(14):4987.
[45] FENG J,WANG X,YE X,et al.Mitochondria as an important target of metformin:the mechanism of action,toxic and side effects,and new therapeutic applications[J].Pharmacol Res,2022,177:106114.
[46] VAEZ H,RAMESHRAD M,NAJAFI M,et al.Cardioprotective effect of metformin in lipopolysaccharide-induced sepsis via suppression of toll-like receptor 4(TLR4) in heart[J].Eur J Pharmacol,2016,772:115-123.
[47] LI M,YU H,WANG Y,et al.Role of IRF4 in the protection of metformin-mediated sepsis myocarditis[J].Dose Response,2019,17(1):1559325819827436.
[48] JOFFRE J,HELLMAN J.Oxidative stress and endothelial dysfunction in sepsis and acute inflammation[J].Antioxid Redox Signal,2021,35(15):1291-1307.
[49] MANTZARLIS K,TSOLAKI V,ZAKYNTHINOS E.Role of oxidative stress and mitochondrial dysfunction in sepsis and potential therapies[J].Oxid Med Cell Longev,2017,2017:5985209.
[50] ZHANG C,ZENG L,CAI G,et al.miR-340-5p alleviates oxidative stress injury by targeting MyD88 in sepsis-induced cardiomyopathy[J].Oxid Med Cell Longev,2022,2022:2939279.
[51] GHAVIMI H,SHEIDAEI S,VAEZ H,et al.Metformin-attenuated sepsis-induced oxidative damages:a novel role for metformin[J].Iran J Basic Med Sci,2018,21(5):469-475.
[52] BEHESHTI F,HOSSEINI M,ARAB Z,et al.Ameliorative role of metformin on lipopolysaccharide-mediated liver malfunction through suppression of inflammation and oxidative stress in rats[J].Toxin Reviews,2022,41(1):55-63.
[53] TRIGGLE C R,MAREI I,YE K,et al.Repurposing metformin for vascular disease[J].Curr Med Chem,2023,30(35):3955-3978.
[54] TIAN R,LI R,LIU Y,et al.Metformin ameliorates endotoxemia-induced endothelial pro-inflammatory responses via AMPK-dependent mediation of HDAC5 and KLF2[J].Biochim Biophys Acta Mol Basis Dis,2019,1865(6):1701-1712.

服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
提示:您还未登录,请登录!点此登录
您是第 465815 位访问者


copyright ©《东南大学学报(医学版)》编辑部
联系电话:025-83272481 83272483
电子邮件:
bjb@pub.seu.edu.cn

本系统由北京博渊星辰网络科技有限公司设计开发 技术支持电话:010-63361626

苏ICP备09058364