>
网站首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们
最新消息:
初诊肺结核患者肠道菌群改变及其与耐多药的临床关系分析
作者:程治军  何多娇  常婧  张毅繁 
单位:三门峡市中心医院 医学检验科, 河南 三门峡 472000
关键词:初诊肺结核 肠道菌群 耐多药 双歧杆菌 相对丰度 
分类号:R521
出版年·卷·期(页码):2024·43·第三期(431-438)
摘要:

目的:观察初诊肺结核患者肠道菌群改变,并分析其与耐多药的临床关系。方法:选取2021年6月至2023年5月本院收治的初诊肺结核患者347例,纳入肺结核组。另选取同期于本院体检的健康受试者347例,纳入健康组。比较两组肠道菌群属水平的相对丰度及肠道菌群Observed species指数、Shannon指数;肺结核组患者治疗2个月后,根据结核分枝杆菌(MTB)是否耐多药将肺结核组分为耐多药组、非耐多药组;比较耐多药组、非耐多药组一般资料及肠道菌群属水平的相对丰度;采用Logistic回归模型分析初诊肺结核患者耐多药的影响因素。结果:与健康组比较,肺结核组丁酸单胞菌属、类杆菌属、乳杆菌属、双歧杆菌属、布劳特菌属、梭状芽孢杆菌属的相对丰度及Observed species指数、Shannon指数降低(P<0.05),肠球菌属、粪球菌属、多尔菌属、志贺菌属、小杆菌属、韦荣球菌属、瘤胃球菌属的相对丰度升高(P<0.05);初诊肺结核患者耐多药率23.08%;与非耐多药组比较,耐多药组双歧杆菌属的相对丰度及Observed species指数、Shannon指数降低(P<0.05);Logistic回归模型分析显示,初中及以下文化程度(OR=2.678,95%CI:1.309~5.476)、慢性阻塞性肺疾病(COPD)(OR=3.931,95%CI:1.514~10.212)、结核病接触史(OR=2.494,95%CI:1.364~4.562)、肺结核空洞病灶数量(OR=2.776,95%CI:1.872~4.116)、治疗过程中断(OR=2.450,95%CI:1.306~4.596)、双歧杆菌属相对丰度(OR=0.393,95%CI:0.268~0.576)和Shannon指数(OR=0.463,95%CI:0.302~0.712)是初诊肺结核患者耐多药的影响因素(P<0.05)。结论:初诊肺结核患者肠道菌群平衡失调,初中及以下文化程度、COPD、结核病接触史、肺结核空洞病灶数量、治疗过程中断是其耐多药的危险因素,双歧杆菌属相对丰度、Shannon指数是其保护因素。

Objective: To observe the changes in intestinal flora of newly diagnosed pulmonary tuberculosis patients and analyze their clinical relationship with multidrug resistance. Methods: A total of 347 newly diagnosed pulmonary tuberculosis patients admitted to our hospital from June 2021 to May 2023 were enrolled in the tuberculosis group. Another 347 healthy subjects who underwent physical examination in our hospital during the same period were enrolled in the healthy group. The relative abundance, Observed species indexes and Shannon indexes of the intestinal flora at the genus level were compared between the two groups. Two months after treatment, according to whether mycobacterium tuberculosis(MTB) was multidrug-resistant, the tuberculosis group was divided into multidrug-resistant group and non-multidrug-resistant group. The general data, relative abundance of the intestinal flora at the genus level were compared between the multidrug-resistant group and the non-multidrug-resistant group. Logistic regression model was used to analyze the influencing factors of multidrug resistance in newly diagnosed pulmonary tuberculosis patients. Results: Compared with the healthy group, the relative abundance of butyricomonas, bacaeroides, lactobacillus, bifidobacterium, blautia, and clostridium, and the Observed species index and Shannon index in the tuberculosis group were decreased(P<0.05), the relative abundance of enterococcus, coprococcus, dorella, shigella, microbacterium, veillonococcus, ruminococcus were increased(P<0.05). The multidrug resistance rate of newly diagnosed pulmonary tuberculosis patients was 23.08%. Compared with the non-multidrug-resistant group, the relative abundance of bifidobacterium, the Observed species index and Shannon index decreased in the multidrug-resistant group(P<0.05). Logistic regression model analysis showed that primary and secondary education level(OR=2.678, 95%CI:1.309-5.476), chronic obstructive pulmonary disease(COPD)(OR=3.931, 95%CI:1.514-10.212), history of tuberculosis exposure(OR=2.494, 95%CI:1.364-4.562), number of pulmonary tuberculosis cavity lesions(OR=2.776, 95%CI:1.872-4.116), treatment interruption(OR=2.450, 95%CI:1.306-4.596), relative abundance of bifidobacterium(OR=0.393, 95%CI:0.268-0.576) and Shannon index(OR=0.463, 95%CI:0.302-0.712) were influencing factors of multidrug resistance in newly diagnosed pulmonary tuberculosis patients(P<0.05). Conclusion: Newly diagnosed pulmonary tuberculosis patients have intestinal flora imbalance. Primary and secondary education level, COPD, history of tuberculosis exposure, number of pulmonary tuberculosis cavity lesions, treatment interruption are risk factors for multidrug resistance, while relative abundance of bifidobacterium and Shannon index are protective factors.

参考文献:

[1] NATHAN C.Mycobacterium tuberculosis as teacher[J].Nat Microbiol,2023,8(9):1606-1608.
[2] SAGILI K D,MUNIYANDI M,SHRINGARPURE K,et al.Strategies to detect and manage latent tuberculosis infection among household contacts of pulmonary TB patients in high TB burden countries-a systematic review and meta-analysis[J].Trop Med Int Health,2022,27(10):842-863.
[3] WELDEMHRET L.Burden of pulmonary tuberculosis and challenges related to tuberculosis detection in Ethiopia[J].J Infect Dev Ctries,2023,17(5):578-582.
[4] TAHSEEN S,VAN DEUN A,DE JONG B C,et al.Second-line injectable drugs for rifampicin-resistant tuberculosis:better the devil we know?[J].J Antimicrob Chemother,2021,76(4):831-835.
[5] YOON H,PARK Y S,SHIN C M,et al.Gut microbiome in probable intestinal tuberculosis and changes following anti-tuberculosis treatment[J].Yonsei Med J,2022,63(1):34-41.
[6] PATE A,RILEY R D,COLLINS G S,et al.Minimum sample size for developing a multivariable prediction model using multinomial logistic regression[J].Stat Methods Med Res,2023,32(3):555-571.
[7] 中华医学会.肺结核基层诊疗指南(2018年)[J].中华全科医师杂志,2019,18(8):709-717.
[8] 赵雁林,陈明亭.中国结核病预防控制工作技术指南[M].北京:人民卫生出版社,2021:17-19.
[9] 王黎霞.结核分枝杆菌药物敏感性试验标准化操作程序及质量保证手册[M].北京:人民卫生出版社,2012:24-25.
[10] BORAH P,DEB P K,VENUGOPALA K N,et al.Tuberculosis:an update on pathophysiology,molecular mechanisms of drug resistance,newer anti-TB drugs,treatment regimens and host-directed therapies[J].Curr Top Med Chem,2021,21(6):547-570.
[11] 李蓓,张冬平,张泽波.TGF-β、 IFN-γ、IL-10与多药联合治疗肺结核产生耐药性和疗效的相关性探讨[J].东南大学学报(医学版),2022,41(1):114-120.
[12] ZHDANOVA S,JIAO W W,SINKOV V,et al.Insight into population structure and drug resistance of pediatric tuberculosis strains from China and Russia gained through whole-genome sequencing[J].Int J Mol Sci,2023,24(12):10302.
[13] 张宇琦,王智永,李宗煜,等.兰州市1 536例确诊肺结核患者耐多药情况及影响因素[J].中华疾病控制杂志,2023,27(7):854-857.
[14] 奚莹,唐军,乔瑞君,等.249例老年肺结核患者耐药状况及产生耐多药的危险因素分析[J].中国防痨杂志,2021,43(6):636-641.
[15] 范大鹏,岳永宁,张艳,等.2014—2018年杭州市肺结核患者的耐药情况及其影响因素分析[J].中国防痨杂志,2021,43(1):72-79.
[16] WANG S,YANG L,HU H,et al.Characteristic gut microbiota and metabolic changes in patients with pulmonary tuberculosis[J].Microb Biotechnol,2022,15(1):262-275.
[17] WANG Y,ZHANG Y,LANE N E,et al.Population-based metagenomics analysis reveals altered gut microbiome in sarcopenia:data from the Xiangya Sarcopenia Study[J].J Cachexia Sarcopenia Muscle,2022,13(5):2340-2351.
[18] 朱小月,沈卫东,江柯炜,等.盆腔恶性肿瘤患者放疗后肠道菌群变化与放射性肠炎的相关性研究[J].东南大学学报(医学版),2022,41(3):364-371.
[19] BARAL T,KURIAN S J,THOMAS L,et al.Impact of tuberculosis disease on human gut microbiota:a systematic review[J].Expert Rev Anti Infect Ther,2023,21(2):175-188.
[20] NIKONENKO B V,DONNIKOV A E,LOGUNOVA N N,et al.Attenuated strain of Mycobacterium tuberculosis BN:characteristics[J].Bull Exp Biol Med,2023,174(3):341-345.
[21] DU W,ZHAO Y,ZHANG L,et al.Bacteriomes in lesions of pulmonary tuberculosis and its association with status of Mycobacterium tuberculosis excretion[J].BMC Microbiol,2022,22(1):280.
[22] BYKOV I,DYACHENKO O,RATMANOV P,et al.Factors contributing to the high prevalence of multidrug-resistance/Rifampicin-resistance in patients with tuberculosis:an epidemiological cross sectional and qualitative study from Khabarovsk krai region of Russia[J].BMC Infect Dis,2022,22(1):612.

服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
提示:您还未登录,请登录!点此登录
您是第 478309 位访问者


copyright ©《东南大学学报(医学版)》编辑部
联系电话:025-83272481 83272483
电子邮件:
bjb@pub.seu.edu.cn

本系统由北京博渊星辰网络科技有限公司设计开发 技术支持电话:010-63361626

苏ICP备09058364