目的:设计并合成聚乙二醇修饰负载槲皮素的聚多巴胺(PDA)类黑色素纳米粒子(PPQ),检测其物化表征及活性氧(ROS)清除能力,并进一步探究其改善子宫内膜异位症能力。方法:采用透射电子显微镜(TEM)、水合粒径(DLS)、Zeta电位分析PPQ的形貌、粒径大小;利用紫外光谱(UV-Vis)分析PPQ中槲皮素的载药浓度及包封率;利用总抗氧化能力的检测试剂(DPPH和ABTS)检测槲皮素、聚乙二醇修饰PDA(PEG-PDA)及PPQ的ROS清除能力;将人子宫异位子宫内膜上皮细胞系(hEM15A)分为对照组及刺激组,并将刺激组分别用槲皮素、PEG-PDA及PPQ进行孵育处理,进一步采用激光共聚焦、细胞毒性试验、细胞活性染色、细胞EdU增殖染色试验及子宫内膜异位症小鼠模型评估PPQ清除ROS改善子宫内膜异位症的作用。结果:TEM及DLS结果提示制备的PDA、PEG-PDA及PPQ为100 nm左右的圆球颗粒,其电位分别为-30、-32、-35 mV左右。紫外光谱提示槲皮素的载药率和包封率分别为≤23%和≤85%。总抗氧化能力检测试剂结果提示槲皮素、PEG-PDA及PPQ均可减少氧自由基的含量,且随着浓度升高其含量越少,同时PPQ展示出最好的ROS清除能力。激光共聚焦实验结果提示:相比于对照组,IL-1β可显著上调hEM15A细胞内ROS水平(P<0.001),而槲皮素、PEG-PDA及PPQ都会降低IL-1β处理的hEM15A细胞内ROS水平(P<0.001),且相比于槲皮素和PEG-PDA,PPQ在细胞内可更有效清除ROS(P<0.001)。细胞毒性试验、细胞活性染色及EdU增殖染色试验结果表明:相比于对照组,IL-1β可显著降低hEM15A细胞的存活率、增殖能力及增加细胞死亡率(P<0.001),而槲皮素、PEG-PDA及PPQ可增加IL-1β 处理的hEM15A细胞存活率及增殖能力,降低死亡率(P<0.001),且相比于槲皮素和PEG-PDA,PPQ对处理的细胞效果最显著(P<0.001)。在体试验显示:PPQ在子宫内膜异位症区域有良好的富集作用,且相比于对照组,PPQ可缩小子宫内膜异位症区域的体积(P<0.001),同时显著降低其ROS水平(P<0.001)。结论:PPQ具有良好的清除ROS功能,是治疗子宫内膜异位症的一种潜在新方法。 |
[1] VERCELLINI P,VIGANÒ P,SOMIGLIANA E,et al.Endometriosis: pathogenesis and treatment[J].Nature Reviews Endocrinology,2014,10:261-275.
[2] GIUDICE L C,KAO L C.Endometriosis[J].Lancet(London, England), 2004,364:1789-1799.
[3] 郭婕莹,蔡云朗.卵巢子宫内膜异位症恶变的相关研究进展[J].东南大学学报(医学版),2024,43:147-151.
[4] POLONSKY A,BRUCK L.Postmenopausal endometriosis presenting as a pelvic mass invading the colon[J].Clinical Case Reports,2020,8:2145-2147.
[5] YUN B H,CHON S J,CHOI Y S,et al.Pathophysiology of endometriosis: role of high mobility group Box-1 and Toll-like receptor 4 developing inflammation in endometrium[J].PLoS One,2016,11:e0148165.
[6] HORNE A W,MISSMER S A.Pathophysiology, diagnosis, and management of endometriosis[J].BMJ,2022,379:e070750.
[7] EDI R,CHENG T.Endometriosis: evaluation and treatment[J].American Family Physician,2022,106:397-404.
[8] DONNEZ J,BINDA M M,DONNEZ O,et al.Oxidative stress in the pelvic cavity and its role in the pathogenesis of endometriosis[J].Fertility and Sterility, 2016,106:1011-1017.
[9] CLOWER L,FLESHMAN T,GELDENHUYS W J,et al.Targeting oxidative stress involved in endometriosis and its pain[J].Biomolecules,2022,12(8):1055.
[10] LIU Y,YANG G,JIN S,et al.Development of high-drug-loading nanoparticles[J].ChemPlusChem,2020,85:2143-2157.
[11] JIN A,WANG Y,LIN K,et al.Nanoparticles modified by polydopamine: working as "drug" carriers[J].Bioactive Materials,2020,5:522-541.
[12] 曲秋莲,张英鸽.纳米技术和材料在医学上应用的现状与展望[J].东南大学学报(医学版),2011,30:157-163.
[13] ANDRADE S S,AZEVEDO A D C,MONASTERIO I C G,et al.17β-Estradiol and steady-state concentrations of H2O2: antiapoptotic effect in endometrial cells from patients with endometriosis[J].Free Radical Biology & Medicine, 2013,60:63-72.
[14] AL-GUBORY K H,FOWLER P A,GARREL C.The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes[J].The International Journal of Biochemistry & Cell Biology,2010,42:1634-1650.
[15] OYINLOYE B E,ADENOWO A F,KAPPO A P.Reactive oxygen species, apoptosis, antimicrobial peptides and human inflammatory diseases[J]. Pharmaceuticals(Basel, Switzerland),2015,8:151-175.
[16] ANDRISANI A,DONÀ G,BRUNATI A M,et al.Increased oxidation-related glutathionylation and carbonic anhydrase activity in endometriosis[J]. Reproductive Biomedicine Online,2014,28:773-779.
[17] 曹义娟,徐惠,权斌,等.活性氧簇对干细胞更新和分化影响的研究进展[J].东南大学学报(医学版),2018,37:355-359.
[18] LI H,YIN D,LI W,et al.Polydopamine-based nanomaterials and their potentials in advanced drug delivery and therapy[J].Colloids and Surfaces B: Biointerfaces,2021,199:111502.
[19] WU Z,YUAN K,ZHANG Q,et al.Antioxidant PDA-PEG nanoparticles alleviate early osteoarthritis by inhibiting osteoclastogenesis and angiogenesis in subchondral bone[J].Journal of Nanobiotechnology,2022,20:479.
[20] VOLPINI C,BLOISE N,DOMINONI M,et al.The nano-revolution in the diagnosis and treatment of endometriosis[J].Nanoscale,2023,15:17313-17325. |