>
网站首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们
最新消息:
足细胞脂代谢重编程在肾小球疾病中的研究进展
作者:张依静1  张彤1  付艺1 2 
单位:1. 山东第一医科大学(山东省医学科学学院) 生物医学科学学院, 山东济南 250117;
2. 山东第一医科大学第一附属医院(山东省千佛山医院), 山东济南 250014
关键词:足细胞 肾小球疾病 脂代谢重编程 异位脂质沉积 糖尿病肾病 综述 
分类号:R692.6
出版年·卷·期(页码):2024·43·第二期(293-299)
摘要:

近年来,越来越多的研究表明肾小球足细胞内病理性脂质蓄积与多种肾小球疾病密切相关。足细胞内异位沉积的脂质可通过多种信号分子和通路调控足细胞脂代谢重编程,造成足细胞损伤,介导肾小球疾病发生和发展的病理生理学进程。同时越来越多与其相关的治疗措施也走入大众视野。因此,在本文中作者主要介绍在糖尿病肾病等肾小球疾病中足细胞脂代谢重编程的相关分子机制与信号通路及其对应的治疗药物,用以提示糖尿病肾病等肾小球疾病的潜在治疗靶点。

参考文献:

[1] FU Y,SUN Y,ZHOU M,et al.Therapeutic potential of progranulin in hyperhomocysteinemia-induced cardiorenal dysfunction[J].Hypertension (Dallas,Tex:1979),2017,69(2):259-266.
[2] FU Y,SUN Y,WANG M,et al.Elevation of JAML promotes diabetic kidney disease by modulating podocyte lipid metabolism[J].Cell Metabolism,2020,32(6):1052-1062.e8.
[3] CATHERINE M S.The ins-and-outs of podocyte lipid metabolism[J].Kidney Int,2020,98(5):1087-1090.
[4] MOORHEAD J F,CHAN M K,EL-NAHAS M,et al.Lipid nephrotoxicity in chronic progressive glomerular and tubulo-interstitial disease[J].Lancet,1982,2(8311):1309-1311.
[5] BOBULESCU I A.Renal lipid metabolism and lipotoxicity[J].Curr Opin Nephrol Hypertens,2010,19(4):393-402.
[6] D'AGATI V D,CHAGNAC A,DE VRIES A P,et al.Obesity-related glomerulopathy:clinical and pathologic characteristics and pathogenesis[J].Nat Rev Nephrol,2016,12(8):453-471.
[7] FORNONI A,MERSCHER S,KOPP J B.Lipid biology of the podocyte——new perspectives offer new opportunities[J].Nat Rev Nephrol,2014,10(7):379-388.
[8] PISETSKY D S.HMGB1:a smoking gun in lupus nephritis?[J].Arthritis Res Ther,2012,14(2):112.
[9] HERMAN-EDELSTEIN M,THOMAS M C,THALLAS-BONKE V,et al.Dedifferentiation of immortalized human podocytes in response to transforming growth factor-beta:a model for diabetic podocytopathy[J].Diabetes,2011,60(6):1779-1788.
[10] SUN L,HALAIHEL N,ZHANG W,et al.Role of sterol regulatory element-binding protein 1 in regulation of renal lipid metabolism and glomerulosclerosis in diabetes mellitus[J].J Biol Chem,2002,277(21):18919-18927.
[11] XUE L,QI H,ZHANG H,et al.Targeting SREBP-2-regulated mevalonate metabolism for cancer therapy[J].Front Oncol,2020,10:1510.
[12] BOITIER E,GAUTIER J C,ROBERTS R.Advances in understanding the regulation of apoptosis and mitosis by peroxisome-proliferator activated receptors in pre-clinical models:relevance for human health and disease[J].Comp Hepatol,2003,2(1):3.
[13] BECK F,PLUMMER S,SENIOR P V,et al.The ontogeny of peroxisome-proliferator-activated receptor gene expression in the mouse and rat[J].Proc Biol Sci,1992,247(1319):83-87.
[14] TONTONOZ P,HU E,GRAVES R A,et al.mPPAR gamma 2:tissue-specific regulator of an adipocyte enhancer[J].Genes Dev,1994,8(10):1224-1234.
[15] XING G,ZHANG L,ZHANG L,et al.Rat PPAR delta contains a CGG triplet repeat and is prominently expressed in the thalamic nuclei[J].Biochem Biophys Res Commun,1995,217(3):1015-1025.
[16] WILDING J P.PPAR agonists for the treatment of cardiovascular disease in patients with diabetes[J].Diabetes Obes Metab,2012,14(11):973-982.
[17] ZHOU Y,KONG X,ZHAO P,et al.Peroxisome proliferator-activated receptor-α is renoprotective in doxorubicin-induced glomerular injury[J].Kidney Int,2011,79(12):1302-1311.
[18] TONTONOZ P,SPIEGELMAN B M.Fat and beyond:the diverse biology of PPARgamma[J].Annu Rev Biochem,2008,77:289-312.
[19] CAMMISOTTO P G,BENDAYAN M.Adiponectin stimulates phosphorylation of AMP-activated protein kinase alpha in renal glomeruli[J].J Mol Histol,2008,39(6):579-584.
[20] KAMPE K,SIEBER J,ORELLANA J M,et al.Susceptibility of podocytes to palmitic acid is regulated by fatty acid oxidation and inversely depends on acetyl-CoA carboxylases 1 and 2[J].Am J Physiol Renal Physiol,2014,306(4):F401-409.
[21] DECLEVES A E,ZOLKIPLI Z,SATRIANO J,et al.Regulation of lipid accumulation by AMK-activated kinase in high fat diet-induced kidney injury[J].Kidney Int,2017,92(3):769.
[22] YANG Q,ZHOU Y,SUN Y,et al.Will sirtuins be promising therapeutic targets for TBI and associated neurodegenerative diseases?[J].Front Neurosci,2020,14:791.
[23] GIACCONI R,CHIODI L,BOCCOLI G,et al.Reduced levels of plasma selenium are associated with increased inflammation and cardiovascular disease in an Italian elderly population[J].Exp Gerontol,2021,145:111219.
[24] ZANG Y,FAN L,CHEN J,et al.Improvement of lipid and glucose metabolism by capsiate in palmitic acid-treated HepG2 cells via activation of the AMPK/SIRT1 signaling pathway[J].J Agric Food Chem,2018,66(26):6772-6781.
[25] OKADA-IWABU M,YAMAUCHI T,IWABU M,et al.A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity[J].Nature,2013,503(7477):493-499.
[26] OKADA-IWABU M,IWABU M,UEKI K,et al.Perspective of small-molecule adipoR agonist for type 2 diabetes and short life in Obesity[J].Diabetes Metab J,2015,39(5):363-372.
[27] DUCASA G M,MITROFANOVA A,MALLELA S K,et al.ATP-binding cassette A1 deficiency causes cardiolipin-driven mitochondrial dysfunction in podocytes[J].J Clin Invest,2019,129(8):3387-3400.
[28] PEDIGO C E,DUCASA G M,LECLERCQ F,et al.Local TNF causes NFATc1-dependent cholesterol-mediated podocyte injury[J].J Clin Invest,2016,126(9):3336-3350.
[29] YANG Y,YANG Q,YANG J,et al.Angiotensin II induces cholesterol accumulation and injury in podocytes[J].Sci Rep,2017,7(1):10672.
[30] HERMAN-EDELSTEIN M,SCHERZER P,TOBAR A,et al.Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy[J].J Lipid Res,2014,55(3):561-572.
[31] LYU J,IMACHI H,FUKUNAGA K,et al.AngiotensinⅡ induces cholesterol accumulation and impairs insulin secretion by regulating ABCA1 in beta cells[J].J Lipid Res,2018,59(10):1906-1915.
[32] FALKEVALL A,MEHLEM A,PALOMBO I,et al.Reducing VEGF-B signaling ameliorates renal lipotoxicity and protects against diabetic kidney disease[J].Cell Metab,2017,25(3):713-726.
[33] ZELENCOVA-GOPEJENKO D,VIDEJA M,GRANDANE A,et al.Heart-type fatty acid binding protein binds long-chain acylcarnitines and protects against lipotoxicity[J].Int J Mol Sci,2023,24(6):5528.
[34] CHEN Y,HE L,YANG Y,et al.The inhibition of Nrf2 accelerates renal lipid deposition through suppressing the ACSL1 expression in obesity-related nephropathy[J].Renal Failure,2019,41(1):821-831.
[35] KRUGER C,BURKE S J,COLLIER J J,et al.Lipid peroxidation regulates podocyte migration and cytoskeletal structure through redox sensitive RhoA signaling[J].Redox Biology,2018,16:248-254.
[36] GE M,FONTANESI F,MERSCHER S,et al.The vicious cycle of renal lipotoxicity and mitochondrial dysfunction[J].Front Physiol,2020,11:732.
[37] ZHANG J,WU Y,ZHANG J,et al.ABCA1 deficiency-mediated glomerular cholesterol accumulation exacerbates glomerular endothelial injury and dysfunction in diabetic kidney disease[J].Metabolism,2023,139:155377.
[38] 孙珺,郭兆安.肾脏疾病中线粒体脂代谢与脂毒性的研究进展[J].生命的化学,2023,43(4):549-557.
[39] DUCASA G M,MITROFANOVA A,FORNONI A.Crosstalk between lipids and mitochondria in diabetic kidney disease[J].Curr Diabetes Rep,2019,19(12):144.
[40] DEHNAVI S,KIANI A,SADEGHI M,et al.Targeting AMPK by statins:a potential therapeutic approach[J].Drugs,2021,81(8):923-933.
[41] JIANG W,HU J W,HE X R,et al.Statins:a repurposed drug to fight cancer[J]. J Exp Clin Cancer Res,2021,40(1):241.
[42] HUANG T S,WU T,WU Y D,et al.Long-term statins administration exacerbates diabetic nephropathy via ectopic fat deposition in diabetic mice[J].Nat Commun,2023,14(1):390.
[43] GAI Z,WANG T,VISENTIN M,et al.Lipid accumulation and chronic kidney disease[J].Nutrients,2019,11(4):722.
[44] MITROFANOVA A,MERSCHER S,FORNONI A.Kidney lipid dysmetabolism and lipid droplet accumulation in chronic kidney disease[J].Nat Rev Nephrol,2023,19(10):629-645.
[45] KIM Y,LIM J H,KIM M Y,et al.The adiponectin receptor agonist AdipoRon ameliorates diabetic nephropathy in a model of type 2 diabetes[J].J Am Soc Nephrol,2018,29(4):1108-1127.
[46] FISMAN E Z,TENENBAUM A.Adiponectin:a manifold therapeutic target for metabolic syndrome,diabetes,and coronary disease?[J].Cardiovasc Diabetol,2014,13:103.
[47] MA T,TIAN X,ZHANG B,et al.Low-dose metformin targets the lysosomal AMPK pathway through PEN2[J].Nature,2022,603(7899):159-165.
[48] KWON S,KIM Y C,PARK J Y,et al.The long-term effects of metformin on patients with type 2 diabetic kidney disease[J].Diabetes Care,2020,43(5):948-955.
[49] WAKINO S,HASEGAWA K,ITOH H.Sirtuin and metabolic kidney disease[J].Kidney Int,2015,88(4):691-698.
[50] MA F,WU J,JIANG Z,et al.P53/NRF2 mediates SIRT1's protective effect on diabetic nephropathy[J].Biochim Biophys Acta Mol Cell Res,2019,1866(8):1272-1281.
[51] XU Y,LIU Q,XU Y,et al.Rutaecarpine suppresses atherosclerosis in ApoE-/-mice through upregulating ABCA1 and SR-BI within RCT[J].J Lipid Res,2014,55(8):1634-1647.
[52] MA J,GUO D,JI X,et al.Composite hydrogel for spatiotemporal lipid intervention of tumor milieu[J].Adv Mater,2023,35(14):e2211579.
[53] SUN Y,CUI S,HOU Y,et al.The updates of podocyte lipid metabolism in proteinuric kidney disease[J].Kidney Dis (Basel),2021,7(6):438-451.
[54] GONZÁLEZ-ALBARRÁN O,MORALES C,PÉREZ-MARAVER M,et al.Review of SGLT2i for the treatment of renal complications:experience in patients with and without T2D[J].Diabetes Ther,2022,13(Suppl 1):35-49.
[55] PEI K,GUI T,LI C,et al.Recent progress on lipid intake and chronic kidney disease[J].Biomed Res Int,2020,2020:3680397.
[56] WIVIOTT S D,RAZ I,BONACA M P,et al.Dapagliflozin and cardiovascular outcomes in type 2 diabetes[J].N Engl J Med,2019,380(4):347-357.
[57] JIANG T,WANG X X,SCHERZER P,et al.Farnesoid X receptor modulates renal lipid metabolism,fibrosis,and diabetic nephropathy[J].Diabetes,2007,56(10):2485-2493.
[58] WANG X X,JIANG T,SHEN Y,et al.Diabetic nephropathy is accelerated by farnesoid X receptor deficiency and inhibited by farnesoid X receptor activation in a type 1 diabetes model[J].Diabetes,2010,59(11):2916-2927.
[59] THOMAS C,GIOIELLO A,NORIEGA L,et al.TGR5-mediated bile acid sensing controls glucose homeostasis[J].Cell Metabolism,2009,10(3):167-177.
[60] WANG X X,WANG D,LUO Y,et al.FXR/TGR5 dual agonist prevents progression of nephropathy in diabetes and obesity[J].J Am Soc Nephrol,2018,29(1):118-137.
[61] ZIMMER S,GREBE A,BAKKE S S,et al.Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming[J].Sci Transl Med,2016,8(333):333ra50.
[62] ZHAO Y,HE L,WANG T,et al.2-hydroxypropyl-β-cyclodextrin regulates the epithelial to mesenchymal transition in breast cancer cells by modulating cholesterol homeostasis and endoplasmic reticulum stress[J].Metabolites,2021,11(8):562.

服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
提示:您还未登录,请登录!点此登录
您是第 472584 位访问者


copyright ©《东南大学学报(医学版)》编辑部
联系电话:025-83272481 83272483
电子邮件:
bjb@pub.seu.edu.cn

本系统由北京博渊星辰网络科技有限公司设计开发 技术支持电话:010-63361626

苏ICP备09058364