>
网站首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们
最新消息:
DNA纳米材料用于肿瘤治疗的研究进展
作者:许伟喆1 2  王芳1 2  孙照刚1 2  褚洪迁1 2 
单位:1. 北京市结核病胸部肿瘤研究所转化医学研究室, 北京 101149;
2. 首都医科大学附属北京胸科医院, 北京 101149
关键词:DNA纳米技术 药物递送 肿瘤治疗 综述 
分类号:R73-36
出版年·卷·期(页码):2024·43·第一期(135-141)
摘要:

传统的癌症治疗方法仍有很多局限性。随着科学技术的发展,纳米技术的出现为癌症治疗带来新希望。其中,脱氧核糖核酸(DNA)具有高度可编程性、生物相容性、精确的空间控制和协调金属离子的能力等优点,已成为用于生物成像、生物传感和治疗的智能自组装纳米系统的强大工具。近年来,DNA功能化纳米材料快速发展,已经被广泛应用于生物医学研究领域,也为肿瘤治疗带来新希望。本文作者主要综述DNA功能化纳米材料应用于肿瘤治疗的研究进展。

参考文献:

[1] SUNG H,FERLAY J,SIEGEL R L,et al.Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin,2021,71(3):209-249.
[2] 蔡阳,朱传东,郑勤.纳米金在肿瘤治疗中的应用[J].现代医学,2016,44(6):893-896.
[3] JIANG S,ZHANG F,YAN H,et al.Complex assemblies and crystals guided by DNA[J].Nat Mater,2020,19(7):694-700.
[4] YAO G,LI J,LI Q,et al.Programming nanoparticle valence bonds with single-stranded DNA encoders[J].Nat Mater,2020,19(7):781-788.
[5] LIU B,HUANG Z,LIU J,et al.Polyvalent spherical nucleic acids for universal display of functional DNA with ultrahigh stability[J].Angew Chem Int Ed,2018,57(30):9439-9442.
[6] LUO D,YAN C,WANG T.Interparticle forces underlying nanoparticle self-assemblies[J].Small,2015,11(45):5984-6008.
[7] AUVINEN H,ZHANG H,NONAPP A,et al.Protein coating of DNA nanostructures for enhanced stability and immunocompatibility[J].Adv Healthc Mater,2017,6(18):1700692.
[8] ZHOU L,CHEN Z,DONG K,et al.DNA-mediated construction of hollow upconversion nanoparticles for protein harvesting and near-infrared light triggered release[J].Adv Mater,2014,26(15):2424-2430.
[9] LIU B,SUN J,ZHU J,et al.Injectable and nIR-responsive DNA-inorganic hybrid hydrogels with outstanding photothermal therapy[J].Adv Mater,2020,32(39):e2004460.
[10] WANG Z,VAN DRUNEN LITTEL-VAN DEN HURK S,CHEN L.Chitosan nanoparticles fabricated through host-guest interaction for enhancing the immunostimulatory effect of CpG oligodeoxynucleotide[J].Carbohydr Polym,2021,271:118417.
[11] ZHOU L,CHEN L,HU X,et al.A Cu(9)S(5) nanoparticle-based CpG delivery system for synergistic photothermal-,photodynamic-and immunotherapy[J].Commun Biol,2020,3(1):343.
[12] KIM J,JANG D,PARK H,et al.Functional-DNA-driven dynamic nanoconstructs for biomolecule capture and drug delivery[J].Adv Mater,2018,30(45):e1707351.
[13] PEI H,LI F,WAN Y,et al.Designed diblock oligonucleotide for the synthesis of spatially isolated and highly hybridizable functionalization of DNA-gold nanoparticle nanoconjugates[J].J Am Chem Soc,2012,134(29):11876-11879.
[14] ZHANG J,DI Z,YAN H,et al.One-step synthesis of single-stranded DNA-bridged iron oxide supraparticles as MRI contrast agents[J].Nano Lett,2021,21(7):2793-2799.
[15] HUANG M,XIONG E,WANG Y,et al.Fast microwave heating-based one-step synthesis of DNA and RNA modified gold nanoparticles[J].Nat Commun,2022,13(1):968.
[16] HAO J,CAO D,ZHAO Q,et al.Intramolecular folding of polyt oligonucleotides induced by cooperative binding of silver(I) ions[J].Molecules,2022,27(22):7842.
[17] VOLLMER J,KRIEG A M.Immunotherapeutic applications of CpG oligodeoxynucleotide tLR9 agonists[J].Adv Drug Deliv Rev,2009,61(3):195-204.
[18] SORSKI L,MELAMED R,LEVI B,et al.Prevention of liver metastases through perioperative acute CpG-C immune stimulation[J].Cancer Immunol Immunother,2020,69(10):2021-2031.
[19] LI M,WANG C,DI Z,et al.Engineering multifunctional DNA hybrid nanospheres through coordination-driven self-assembly[J].Angew Chem Int Ed,2019,58(5):1350-1354.
[20] PERRY J L,TIAN S,SENGOTTUVEL N,et al.Pulmonary delivery of nanoparticle-bound toll-like receptor 9 agonist for the treatment of metastatic lung cancer[J].ACS Nano,2020,14(6):7200-7215.
[21] GAUSE K T,WHEATLEY A K,CUI J,et al.Immunological principles guiding the rational design of particles for vaccine delivery[J].ACS Nano,2017,11(1):54-68.
[22] ZHANG Y,LIN S,WANG X Y,et al.Nanovaccines for cancer immunotherapy[J].Wiley Interdiscip Rev Nanomed Nanobiotechnol,2019,11(5):e1559.
[23] MONTAMAT G,LEONARD C,POLI A,et al.CpG Adjuvant in allergen-specific immunotherapy:finding the sweet spot for the induction of immune tolerance[J].Front Immunol,2021,12:590054.
[24] LI T,HUA C,YUE W,et al.Discrepant antitumor efficacies of three CpG oligodeoxynucleotide classes in monotherapy and co-therapy with PD-1 blockade[J].Pharmacol Res,2020,161:105293.
[25] LIU D,DENG B,LIU Z,et al.Enhanced antitumor immune responses via a self-assembled carrier-free nanovaccine[J].Nano Lett,2021,21(9):3965-3973.
[26] AHMED M S,BAE Y S.Dendritic cell-based therapeutic cancer vaccines:past,present and future[J].Clin Exp Vaccine Res,2014,3(2):113-116.
[27] SHI X,SONG H,WANG C,et al.Co-assembled and self-delivered epitope/CpG nanocomplex vaccine augments peptide immunogenicity for cancer immunotherapy[J].Chem Eng J,2020,399(1):125-854.
[28] LAI C,DUAN S,YE F,et al.The enhanced antitumor-specific immune response with mannose-and CpG-ODN-coated liposomes delivering TRP2 peptide[J].Theranostics,2018,8(6):1723-1739.
[29] WHIT E.Apoptosis,autophagy,and cancer:the critical role genes & development played in paradigm shifts[J].Genes Dev,2023,37(1-2):59-62.
[30] PENTIMALLI F.BCL2:a 30-year tale of life,death and much more to come[J].Cell Death Differ,2018,25(1):7-9.
[31] HAFEZI S,RAHMANI M.Targeting BCL-2 in cancer:advances,challenges,and perspectives[J].Cancers(Basel),2021,13(6):1292.
[32] LIU B,HU F,ZHANG J,et al.A biomimetic coordination nanoplatform for controlled encapsulation and delivery of drug-gene combinations[J].Angew Chem Int Ed,2019,58(26):8804-8808.
[33] CHENG X,LIU Q,LI H,et al.Lipid nanoparticles loaded with an antisense oligonucleotide gapmer against Bcl-2 for treatment of lung cancer[J].Pharm Res,2017,34(2):310-320.
[34] WILLIER S,ROTHAMEL P,HASTREITER M,et al.CLEC12A and CD33 coexpression as a preferential target for pediatric AML combinatorial immunotherapy[J].Blood,2021,137(8):1037-1049.
[35] YAN C,GU J,ZHANG Y,et al.Efficient delivery of the Bcl-2 antisense oligonucleotide G3139 via nucleus-targeted aCD33-NKSN nanoparticles[J].Int J Pharm,2022,625:122074.
[36] ZHOU W,DING J,LIU J.Theranostic DNAzymes[J].Theranostics,2017,7(4):1010-1025.
[37] HUANG P J,LIN J,CAO J,et al.Ultrasensitive DNAzyme beacon for lanthanides and metal speciation[J].Anal Chem,2014,86(3):1816-1821.
[38] XIAO X,CHEN M,ZHANG Y,et al.Hemin-incorporating DNA nanozyme enabling catalytic oxygenation and GSH depletion for enhanced photodynamic therapy and synergistic tumor ferroptosis[J].J Nanobiotechnology,2022,20(1):410.
[39] WU Y,TORABI S F,LAKE R J,et al.Simultaneous Fe2+/Fe3+ imaging shows Fe3+ over Fe2+ enrichment in alzheimer's disease mouse brain[J].Sci Adv,2023,9(16):eade7622.
[40] LIU C,CHEN Y,ZHAO J,et al.Self-assembly of copper-DNAzyme nanohybrids for dual-catalytic tumor therapy[J].Angew Chem Int Ed,2021,60(26):14324-14328.
[41] GUAN B,ZHANG X.Aptamers as versatile ligands for biomedical and pharmaceutical applications[J].Int J Nanomedicine,2020,15:1059-1071.
[42] BANESHI M,DADFARNIA S,SHABANI A M H,et al.A novel theranostic system of aS1411 aptamer-functionalized albumin nanoparticles loaded on iron oxide and gold nanoparticles for doxorubicin delivery[J].Int J Pharm,2019,564:145-152.
[43] ZHANG J,LI W,QI Y,et al.PD-L1 aptamer-functionalized metal-organic framework nanoparticles for robust photo-immunotherapy against cancer with enhanced safety[J].Angew Chem Int Ed,2023,62(5):e202214750.
[44] HU Q,LI H,WANG L,et al.DNA nanotechnology-enabled drug delivery systems[J].Chem Rev,2019,119(10):6459-6506.
[45] HUANG X,BLUM N T,LIN J,et al.Chemotherapeutic drug-DNA hybrid nanostructures for anti-tumor therapy[J].Mater Horiz,2021,8(1):78-101.
[46] ZHOU Y,YANG Q,WANG F,et al.Self-assembled DNA nanostructure as a carrier for targeted siRNA delivery in glioma cells[J].Int J Nanomedicine,2021,16:1805-1817.
[47] FAN Q,HE Z,XIONG J,et al.Smart drug delivery systems based on DNA nanotechnology[J].Chempluschem,2022,87(3):e202100548.
[48] MA B,MA Y,DENG B,et al.Tumor microenvironment-responsive spherical nucleic acid nanoparticles for enhanced chemo-immunotherapy[J].J Nanobiotechnology,2023,21(1):171.
[49] DENG B,MA B,MA Y,et al.Doxorubicin and CpG loaded liposomal spherical nucleic acid for enhanced cancer treatment[J].J Nanobiotechnology,2022,20(1):140.
[50] MILLER M A,ZHENG Y R,GADDE S,et al.Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(IV) pro-drug[J].Nat Commun,2015,6:8692.
[51] WANG Y,ZHANG L,LIU Y,et al.Engineering CpG-ASO-Pt-Loaded macrophages(CAP@M) for synergistic chemo-/gene-/immuno-therapy[J].Adv Healthc Mater,2022,11(15):e2201178.

服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
提示:您还未登录,请登录!点此登录
您是第 465807 位访问者


copyright ©《东南大学学报(医学版)》编辑部
联系电话:025-83272481 83272483
电子邮件:
bjb@pub.seu.edu.cn

本系统由北京博渊星辰网络科技有限公司设计开发 技术支持电话:010-63361626

苏ICP备09058364