>
网站首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们
最新消息:
中性粒细胞相关细胞因子对哮喘的作用研究进展
作者:吴雨婷1 2  王萌萌1 2  高蓉2  乔伟振2 
单位:1. 南京医科大学, 江苏 南京 211166;
2. 南京医科大学附属无锡人民医院 医学检验科, 江苏 无锡 214023
关键词:中性粒细胞 哮喘 细胞因子 炎症反应 综述 
分类号:R562.25
出版年·卷·期(页码):2023·42·第六期(945-950)
摘要:

哮喘是一种以慢性气道炎症和气道高反应性为特征的异质性疾病,其病因复杂且发病机制尚未完全阐明。多种细胞及细胞组分参与哮喘的发病过程,其中以中性粒细胞浸润为主的哮喘对常规口服或吸入类固醇激素治疗不敏感,且常伴有更严重的临床症状。近年来,中性粒细胞及其相关的多种细胞因子调节哮喘患者的气道高反应性、气道上皮细胞损害以及气道重塑等病理过程受到越来越多的关注。本文作者综述了中性粒细胞相关细胞因子在哮喘发生发展过程中的主要作用及其作用机制,以期为以气道中性粒细胞浸润为主的哮喘患者寻求治疗新策略提供理论依据。

参考文献:

[1] NABE T.Steroid-resistant asthma and neutrophils[J].Biol Pharm Bull,2020,43(1):31-35.
[2] PANETTIERI R A.The role of neutrophils in asthma[J].Immunology and Allergy Clinics of North America,2018,38(4):629-638.
[3] HAMMAD H,LAMBRECHT B N.The basic immunology of asthma[J].Cell,2021,184(6):1469-1485.
[4] FAEQALI J M,MUNEER A H,HASAN A B,et al.Assessment of interleukin-8 in bronchial asthma in Iraq[J].Arch Razi Inst,2021,76(4):913-923.
[5] MICHAELOUDES C,ABUBAKAR-WAZIRI H,LAKHDAR R,et al.Molecular mechanisms of oxidative stress in asthma[J].Molecular Aspects of Medicine,2022,85:101026.
[6] RACANELLI A C,KIKKERS S A,CHOI A,et al.Autophagy and inflammation in chronic respiratory disease[J].Autophagy,2018,14(2):221-232.
[7] LAMBRECHT B N,HAMMAD H.The airway epithelium in asthma[J].Nature Medicine,2012,18(5):684-692.
[8] RITZMANN F,LUNDING L P,BALS R,et al.IL-17 cytokines and chronic lung diseases[J].Cells,2022,11(14):2132.
[9] HABIB N,PASHA M A,TANG D D.Current understanding of asthma pathogenesis and biomarkers[J].Cells,2022,11(17):2764.
[10] RAMAKRISHNAN R K,AL HEIALY S,HAMID Q.Role of IL-17 in asthma pathogenesis and its implications for the clinic[J].Expert Review of Respiratory Medicine,2019,13(11):1057-1068.
[11] MIZUTANI N,NABE T,YOSHINO S.IL-17A promotes the exacerbation of IL-33-induced airway hyperresponsiveness by enhancing neutrophilic inflammation via CXCR2 signaling in mice[J].J Immunol,2014,192(4):1372-1384.
[12] HALL S L,BAKER T,LAJOIE S,et al.IL-17A enhances IL-13 activity by enhancing IL-13-induced signal transducer and activator of transcription 6 activation[J].J Allergy Clin Immunol,2017,139(2):462-471.
[13] ZHANG D,YANG H,DONG X L,et al.TL1A/DR3 axis,a key target of TNF-a,augments the epithelial-mesenchymal transformation of epithelial cells in OVA-induced asthma[J].Front Immunol,2022,13:854995.
[14] TAKAYAMA S,TAMAOKA M,TAKAYAMA K,et al.Synthetic double-stranded RNA enhances airway inflammation and remodelling in a rat model of asthma[J].Immunology,2011,134(2):140-150.
[15] BUSSE P J,ZHANG T F,SCHOFIELD B,et al.Decrease in airway mucous gene expression caused by treatment with anti-tumor necrosis factor alpha in a murine model of allergic asthma[J].Ann Allergy Asthma Immunol,2009,103(4):295-303.
[16] YULIANI F S,CHEN J Y,CHENG W H,et al.Thrombin induces IL-8/CXCL8 expression by DCLK1-dependent RhoA and YAP activation in human lung epithelial cells[J].J Biomed Sci,2022,29(1):95.
[17] HA H,DEBNATH B,NEAMATI N.Role of the CXCL8-CXCR1/2 axis in cancer and inflammatory diseases[J].Theranostics,2017,7(6):1543-1588.
[18] MATSUSHIMA K,YANG D,OPPENHEIM J J.Interleukin-8:an evolving chemokine[J].Cytokine,2022,153:155828.
[19] KEGLOWICH L,ROTH M,PHILIPPOVA M,et al.Bronchial smooth muscle cells of asthmatics promote angiogenesis through elevated secretion of CXC-chemokines(ENA-78,GRO-α,and IL-8)[J].PLoS One,2013,8(12):e81494.
[20] GOVINDARAJU V,MICHOUD M C,AL-CHALABI M,et al.Interleukin-8:novel roles in human airway smooth muscle cell contraction and migration[J].Am J Physiol Cell Physiol,2006,291(5):C957-C965.
[21] PHAM D L,BAN G Y,KIM S H,et al.Neutrophil autophagy and extracellular DNA traps contribute to airway inflammation in severe asthma[J].Clin Exp Allergy,2017,47(1):57-70.
[22] HICKS A,MONKARSH S P,HOFFMAN A F,et al.Leukotriene B4 receptor antagonists as therapeutics for inflammatory disease:preclinical and clinical developments[J].Expert Opin Investig Drugs,2007,16(12):1909-1920.
[23] GELFAND E W.Importance of the leukotriene B4-BLT1 and LTB4-BLT2 pathways in asthma[J].Seminars in Immunology,2017,33:44-51.
[24] NAKAMURA M,SHIMIZU T.Recent advances in function and structure of two leukotriene B(4) receptors:BLT1 and BLT2[J].Biochem Pharmacol,2022,203:115178.
[25] YOKOMIZO T,NAKAMURA M,SHIMIZU T.Leukotriene receptors as potential therapeutic targets[J].J Clin Invest,2018,128(7):2691-2701.
[26] DAKHAMA A,COLLINS M L,OHNISHI H,et al.IL-13-producing BLT1-positive CD8 cells are increased in asthma and are associated with airway obstruction[J].Allergy,2013,68(5):666-673.
[27] DÖMER D,WALTHER T,MÖLLER S,et al.Neutrophil extracellular traps activate proinflammatory functions of human neutrophils[J].Front Immunol,2021,12:636954.
[28] VARRICCHI G,MODESTINO L,POTO R,et al.Neutrophil extracellular traps and neutrophil-derived mediators as possible biomarkers in bronchial asthma[J].Clin Exp Med,2022,22(2):285-300.
[29] POTO R,SHAMJI M,MARONE G,et al.Neutrophil extracellular traps in asthma:friends or foes?[J].Cells,2022,11(21):3521.
[30] LACHOWICZ-SCROGGINS M E,DUNICAN E M,CHARBIT A R,et al.Extracellular DNA,neutrophil extracellular traps,and inflammasome activation in severe asthma[J].Am J Respir Crit Care Med,2019,199(9):1076-1085.
[31] HAN X A,JIE H Y,WANG J H,et al.Necrostatin-1 ameliorates neutrophilic inflammation in asthma by suppressing MLKL phosphorylation to inhibiting NETs release[J].Front Immunol,2020,11:666.
[32] COMHAIR S A,ERZURUM S C.Redox control of asthma:molecular mechanisms and therapeutic opportunities[J].Antioxid Redox Signal,2010,12(1):93-124.
[33] LIU K,HUA S,SONG L.PM2.5 exposure and asthma development:the key role of oxidative stress[J].Oxid Med Cell Longev,2022,2022:3618806.
[34] HU X,SHEN Y,ZHAO Y,et al.Epithelial Aryl hydrocarbon receptor protects from mucus production by inhibiting ROS-triggered NLRP3 inflammasome in asthma[J].Front Immunol,2021,12:767508.
[35] WHITEHEAD G S,THOMAS S Y,NAKANO K,et al.A neutrophil/TGF-β axis limits the pathogenicity of allergen-specific CD4+ T cells[J].JCI Insight,2022,7(4):e150251.
[36] SAITO A,HORIE M,NAGASE T.TGF-β signaling in lung health and disease[J].Int J Mol Sci,2018,19(8):2460.
[37] JENDZJOWSKY N G,KELLY M M.The role of airway myofibroblasts in asthma[J].Chest,2019,156(6):1254-1267.
[38] LIU G,PHILP A M,CORTE T,et al.Therapeutic targets in lung tissue remodelling and fibrosis[J].Pharmacol Ther,2021,225:107839.
[39] RIEMMA M A,CERQUA I,ROMANO B,et al.Sphingosine-1-phosphate/TGF-β axis drives epithelial mesenchymal transition in asthma-like disease[J].Br J Pharmacol,2022,179(8):1753-1768.
[40] ZOU F,ZHANG J,XIANG G,et al.Association of matrix metalloproteinase 9(MMP-9) polymorphisms with asthma risk:a Meta-analysis[J].Can Respir J,2019,2019:9260495.
[41] CHUNG F T,HUANG H Y,LO C Y,et al.Increased ratio of matrix metalloproteinase-9(MMP-9)/tissue inhibitor metalloproteinase-1 from alveolar macrophages in chronic asthma with a fast decline in FEV(1) at 5-year follow-up[J].J Clin Med,2019,8(9):1451.
[42] VIEIRA C P,DE OLIVEIRA L P,DA S M,et al.Role of metalloproteinases and TNF-α in obesity-associated asthma in mice[J].Life Sci,2020,259:118191.
[43] WU X L,LI R,ZHANG H W,et al.Methylation status of ORMDL3 regulates cytokine production and p-ERK/MMP9 pathway expression[J].Exp Cell Res,2018,372(1):43-51.
[44] DING Z,YU F,SUN Y,et al.ORMDL3 promotes angiogenesis in chronic asthma through the ERK1/2/VEGF/MMP-9 pathway[J].Front Pediatr,2021,9:708555.
[45] DUAN X J,ZHANG X,LI L R,et al.MiR-200a and miR-200b restrain inflammation by targeting ORMDL3 to regulate the ERK/MMP-9 pathway in asthma[J].Exp Lung Res,2020,46(9):321-331.
[46] YU F,SUN Y,YU J,et al.ORMDL3 is associated with airway remodeling in asthma via the ERK/MMP-9 pathway[J].Mol Med Rep,2017,15(5):2969-2976.

服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
提示:您还未登录,请登录!点此登录
您是第 412751 位访问者


copyright ©《东南大学学报(医学版)》编辑部
联系电话:025-83272481 83272483
电子邮件:
bjb@pub.seu.edu.cn

苏ICP备09058364