[1] SELVARAJAH D, KAR D, KHUNTI K, et al.Diabetic peripheral neuropathy:advances in diagnosis and strategies for screening and early intervention[J].Lancet Diabetes Endocrinol, 2019, 7(12):938-948.
[2] DU W, WANG N, LI F, et al.STAT3 phosphorylation mediates high glucose-impaired cell autophagy in an HDAC1-dependent and-independent manner in Schwann cells of diabetic peripheral neuropathy[J].FASEB J, 2019, 33(7):8008-8021.
[3] HAO W, TASHIRO S, HASEGAWA T, et al.Hyperglycemiapromotes Schwann cell de-differentiation and de-myelination via sorbitol accumulation and Igf1 protein down-regulation[J].J Biol Chem, 2015, 290(28):17106-17115.
[4] YAO W, YANG X, ZHU J, et al.IRE1α siRNA relieves endoplasmic reticulum stress-induced apoptosis and alleviates diabetic peripheral neuropathy in vivo and in vitro[J].Sci Rep, 2018, 8(1):2579-2588.
[5] HAUSER A S, ATTWOOD M M, RASK-ANDERSEN M, et al.Trends in GPCR drug discovery:new agents, targets and indications[J].Nat Rev Drug Discov, 2017, 16(12):829-842.
[6] ROMÁN-PINTOS L M, VILLEGAS-RIVERA G, RODRÍGUEZ-CARRIZALEZ A D, et al.Diabetic polyneuropathy in type 2 diabetes mellitus:inflammation, oxidative stress, and mitochondrial function[J].J Diabetes Res, 2016, 2016(1):1-13.
[7] FORSBERG E, XU C, GRVNLER J, et al.Coenzyme Q10 and oxidative stress, the association with peripheral sensory neuropathy and cardiovascular disease in type 2 diabetes mellitus[J].J Diabetes Complications, 2015, 29(8):1152-1158.
[8] SVANE J, PEDERSEN-BJERGAARD U, TFELT-HANSEN J.Diabetes and the risk of sudden cardiac death[J].Curr Cardiol Rep, 2020, 22(10):112-124.
[9] CRUNKHORN S.GPCR agonist targets obesity and diabetes[J].Nat Rev Drug Discov, 2020, 19(3):168-178.
[10] ARMBRUSZT S, ABRAHAM H, FIGLER M, et al.Cocaine-and amphetamine-regulated transcript (CART) peptide immunoreactivity in feeding-and reward-related brain areas of young OLETF rats[J].J Chem Neuroanat, 2013, 50-51(1):75-84.
[11] FANG Y, KENAKIN T, LIU C.Editorial:orphan GPCRs as emerging drug targets[J].Front Pharmacol, 2015, 6(1):295-306.
[12] YOSTEN G L, HARADA C M, HADDOCK C, et al.GPR160 de-orphanization reveals critical roles in neuropathic pain in rodents[J].J Clin Invest, 2020, 130(5):2587-2592.
[13] ZHOU C, DAI X, CHEN Y, et al.G protein-coupled receptor GPR160 is associated with apoptosis and cell cycle arrest of prostate cancer cells[J].Oncotarget, 2016, 7(11):12823-12839.
[14] TEHSE J, TAGHIBIGLOU C.The overlooked aspect of excitotoxicity:glutamate-independent excitotoxicity in traumatic brain injuries[J].Eur J Neurosci, 2019, 49(9):1157-1170.
[15] ZHU P, HU S, JIN Q, et al.Ripk3 promotes ER stress-induced necroptosis in cardiac IR injury:a mechanism involving calcium overload/XO/ROS/mPTP pathway[J].Redox Biol, 2018, 16:157-168.
[16] HAN J, BACK S H, HUR J et al.ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death[J].Nat Cell Biol, 2013, 15(5):481-490.
[17] ZHANG D G, CHENG J, TAI Z P, et al.Identification of five genes in endoplasmic reticulum (ER) stress-apoptosis pathways in yellow catfish Pelteobagrus fulvidraco and their transcriptional responses to dietary lipid levels[J].Fish Physiol Biochem, 2019, 45(3):1117-1127.
[18] YAO W, YANG X, ZHU J, et al.Tang-Luo-Ning, a traditional chinese medicine, inhibits endoplasmic reticulum stress-induced apoptosis of schwann cells under high glucose environment[J].Evid Based Complement Alternat Med, 2017, 2017(1):1-12.
[19] KIM S, WOO C H.Laminar flow inhibits er stress-induced endothelial apoptosis through PI3K/Akt-dependent signaling pathway[J].Mol Cells, 2018, 41(11):964-970.
[20] CHERN Y J, WONG JC T, CHENG G S W, et al.The interaction between SPARC and GRP78 interferes with ER stress signaling and potentiates apoptosis via PERK/eIF2α and IRE1α/XBP-1 in colorectal cancer[J].Cell Death Dis, 2019, 10(7):504-513.
[21] XU X, LIU J, HUANG B, et al.Reduced response of IRE1α/Xbp-1 signaling pathway to bortezomib contributes to drug resistance in multiple myeloma cells[J].Tumori, 2017, 103(3):261-267. |