>
网站首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们
最新消息:
基于数据挖掘分析FAM64A在肺腺癌中的表达模式和作用机制
作者:庞倩1  蒙绪君1  肖钦晓2 
单位:1. 海南博鳌超级医院 呼吸内科, 海南 琼海 571437;
2. 琼海市人民医院 呼吸内科, 海南 琼海 571499
关键词:数据挖掘 FAM64A 肺腺癌 
分类号:R734.2
出版年·卷·期(页码):2022·41·第五期(629-636)
摘要:

目的:基于数据挖掘分析FAM64A在肺腺癌中的表达和作用机制。方法:利用TIMER和GEPIA数据库分析FAM64A在人类恶性肿瘤中的表达;使用GEPIA和UALCAN数据库分析FAM64A表达与肺腺癌患者临床分期的相关性;通过Kaplan-Meier Plotter评估FAM64A表达对肺腺癌患者总体生存率和无复发生存率的影响;通过cBioPortal数据库探索FAM64A在肺腺癌中的遗传突变;通过GEMEMANIA和SDTRING数据库构建FAM64A的相互作用网络;最后鉴定与FAM64A存在相关关系的基因并进行功能富集分析。结果:与正常组织相比,FAM64A在包括肺腺癌在内的多种人类恶性肿瘤中显著高表达。GEPIA和UALCAN数据库分析显示,FAM64A表达越高患者临床分期越晚。Kaplan-Meier生存曲线结果显示,FAM64A表达越高肺腺癌患者的5年总体生存率和无复发生存率越低。此外,相互作用网络结果显示,FAM64A可能与BUB1存在相互作用关系。功能富集分析发现,FAM64A及其共表达基因主要参与细胞周期、DNA复制、RNA转运、同源重组、P53信号通路、氧化磷酸化等信号通路。结论:FAM64A在肺腺癌中高表达,且FAM64A高表达与肺腺癌患者的不良临床结局相关,可能作为肺腺癌的潜在预后生物标志物。

Objective: To analyze the expression and mechanism of FAM64A in lung adenocarcinoma based on data mining. Methods: TIMER and GEPIA databases were used to analyze the expression of FAM64A in human malignant tumors; GEPIA and UALCAN databases were used to analyze the correlation between FAM64A expression and the clinical stage of lung adenocarcinoma patients; Kaplan-Meier Plotter was used to evaluate the effect of FAM64A expression on the overall survival and recurrence-free survival of patients with lung adenocarcinoma; The genetic mutation of FAM64A in lung adenocarcinoma was explored through the cBioPortal database; The interaction network of FAM64A was constructed through the GEMEMANIA and SDTRING databases; Finally, genes related to FAM64A were identified and performed functional enrichment analysis. Results: Compared with normal tissues, FAM64A was significantly highly expressed in a variety of human malignancies including lung adenocarcinoma. GEPIA and UALCAN databases analysis showed that the higher the expression of FAM64A, the later the clinical stage of the patient. Kaplan-Meier survival curve results showed that the higher the expression of FAM64A, the worse the overall survival rate and recurrence-free survival rate of patients with lung adenocarcinoma. In addition, the results of the interaction network showed that FAM64A may have an interaction relationship with BUB1. Functional enrichment analysis revealed that FAM64A and its co-expressed genes were mainly involved in signal pathways such as cell cycle, DNA replication, RNA transport, homologous recombination, P53 signaling pathway, and oxidative phosphorylation. Conclusion: This study finds that FAM64A is highly expressed in lung adenocarcinoma through the second mining of tumor data, and the high expression of FAM64A is related to the poor clinical outcome of patients with lung adenocarcinoma, and it may be used as a potential prognostic biomarker for lung adenocarcinoma.

参考文献:

[1] RODESCU D.Lung cancer[J].The Medical Clinics of North America, 1977, 61(6):1205-1218.
[2] SETHI T.Lung cancer.Introduction[J].Thorax, 2002, 57(11):992-993.
[3] NASIM F, SABATH B F, EAPEN G A.Lung cancer[J].The Medical Clinics of North America, 2019, 103(3):463-473.
[4] The Lancet.Lung cancer:some progress, but still a lot more to do[J].Lancet, 2019, 394(2):1880.
[5] ARCHANGELO L F, GL SNER J, KRAUSE A, et al.The novel CALM interactor CATS influences the subcellular localization of the leukemogenic fusion protein CALM/AF10[J].Oncogene, 2006, 25(29):4099-4109.
[6] ARCHANGELO L F, GREIF P A, MAUCUER A, et al.The CATS (FAM64A) protein is a substrate of the Kinase Interacting Stathmin (KIS)[J].Biochim Biophys Acta, 2013, 1833(5):1269-1279.
[7] ARCHANGELO L F, GREIF P A, H LZEL M, et al.The CALM and CALM/AF10 interactor CATS is a marker for proliferation[J].Molecular Oncology, 2008, 2(4):356-367.
[8] JIANG L, REN L, ZHANG X, et al.Overexpression of PIMREG promotes breast cancer aggressiveness via constitutive activation of NF-κB signaling[J].EBioMedicine, 2019, 43(5):188-200.
[9] JIAO Y, FU Z, LI Y Q, et al.Aberrant FAM64A mRNA expression is an independent predictor of poor survival in pancreatic cancer[J].PLoS One, 2019, 14(1):e0211291
[10] JIANG Z M, LI H B, CHEN S G.PIMREG, a marker of proliferation, facilitates aggressive development of cholangiocarcinoma cells partly through regulating cell cycle-related markers[J].Technol Cancer Res Treat, 2020, 19(2):1-10.
[11] WANG D, HU A, PENG H, et al.Tumor-promoting function of PIMREG in glioma by activating the β-catenin pathway[J].Biotech, 2021, 11(8):380.
[12] LI T, FAN J, WANG B, et al.TIMER:a web server for comprehensive analysis of tumor-infiltrating immune cells[J].Cancer Research, 2017, 77(21):e108-e110.
[13] TANG Z, LI C, KANG B, et al.GEPIA:a web server for cancer and normal gene expression profiling and interactive analyses[J].Nucleic Acids Research, 2017, 45(W1):W98-W102.
[14] CHANDRASHEKAR D S, BASHEL B, BALASUBRAMANYA S A H, et al.UALCAN:a portal for facilitating tumor subgroup gene expression and survival analyses[J].Neoplasia, 2017, 19(8):649-658.
[15] NAGY Á, MUNK CSY G, GYÖRFFY B.Pancancer survival analysis of cancer hallmark genes[J].Scientific Reports, 2021, 11(1):6047.
[16] CERAMI E, GAO J, DOGRUSOZ U, et al.The cBio cancer genomics portal:an open platform for exploring multidimensional cancer genomics data[J].Cancer Discov, 2012, 2(5):401-404.
[17] FRANZ M, RODRIGUEZ H, LOPES C, et al.GeneMANIA update 2018[J].Nucleic Acids Research, 2018, 46(W1):W60-W64.
[18] SZKLARCZYK D, GABLE A L, LYON D, et al.STRING v11:protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets[J].Nucleic Acids Research, 2019, 47(D1):D607-D613.
[19] VASAIKAR S V, STRAUB P, WANG J, et al.LinkedOmics:analyzing multi-omics data within and across 32 cancer types[J].Nucleic Acids Research, 2018, 46(D1):D956-D963.
[20] DUMA N, SANTANA-DAVILA R, MOLINA J R.Non-small cell lung cancer:epidemiology, screening, diagnosis, and treatment[J].Mayo Clinic Proceedings, 2019, 94(8):1623-1640.
[21] HIRSCH F R, SCAGLIOTTI G V, MULSHINE J L, et al.Lung cancer:current therapies and new targeted treatments[J].Lancet, 2017, 389(10066):299-311.
[22] NAYLOR E C, DESANI J K, CHUNG P K.Targeted therapy and immunotherapy for lung cancer[J].Surg Oncol Clin N Am, 2016, 25(3):601-609.
[23] OBERNDORFER F, MVLLAUER L.Molecular pathology of lung cancer:current status and perspectives[J].Curr Opin Oncol, 2018, 30(2):69-76.
[24] BOLANOS-GARCIA V M, BLUNDELL T L.BUB1 and BUBR1:multifaceted kinases of the cell cycle[J].Trends Biochem Sci, 2011, 36(3):141-150.
[25] ZHU L J, PAN Y, CHEN X Y, et al.BUB1 promotes proliferation of liver cancer cells by activating SMAD2 phosphorylation[J].Oncology Letters, 2020, 19(5):3506-3512.
[26] PIAO J, ZHU L, SUN J, et al.High expression of CDK1 and BUB1 predicts poor prognosis of pancreatic ductal adenocarcinoma[J].Gene, 2019, 701(6):15-22.
[27] DEWAR J M, WALTER J C.Mechanisms of DNA replication termination[J].Nature Reviews Molecular Cell Biology, 2017, 18(8):507-516.
[28] UBHI T, BROWN G W.Exploiting DNA replication stress for cancer treatment[J].Cancer Research, 2019, 79(8):1730-1739.
[29] PARRALES A, IWAKUMA T.Targeting oncogenic mutant p53 for cancer therapy[J].Front Oncol, 2015, 5(12):288.
[30] LACROIX M, RISCAL R, ARENA G, et al.Metabolic functions of the tumor suppressor p53:Implications in normal physiology, metabolic disorders, and cancer[J].Molecular Metabolism, 2020, 33(3):2-22.

服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
提示:您还未登录,请登录!点此登录
您是第 412613 位访问者


copyright ©《东南大学学报(医学版)》编辑部
联系电话:025-83272481 83272483
电子邮件:
bjb@pub.seu.edu.cn

苏ICP备09058364