目的:通过建立稳定、有效、符合临床的大鼠脑缺血再灌注损伤诱发急性肾损伤动物模型,探讨转化生长因子-β1(TGF-β1)/Smad7通路在其中的作用,为临床诊疗提供可能的作用靶点。方法:将20只雄性SD大鼠随机分为正常组和缺血2、4、6 h组4组各5只,采用大脑中动脉栓塞法制作缺血模型,通过检测大鼠血尿素氮(BUN)、血肌酐(Scr)判断肾脏功能,HE和Masson染色观察肾脏组织病理变化。选取大鼠肾脏损伤相对较严重的缺血时间为本研究需要的模型缺血时间点。取25只雄性SD大鼠随机分为5组,并根据得出的缺血时间点行再灌注处理,在不同的再灌注时间点处死。采用荧光定量聚合酶链反应和蛋白质印迹法检测TGF-β1、Smad7、Ⅰ型和Ⅲ型胶原蛋白的mRNA及蛋白表达水平。酶联免疫吸附试验(ELISA)检测大鼠血浆炎症因子水平变化。结果:大鼠脑组织缺血4 h血清BUN和Scr水平高于其他组(P<0.05)。缺血4 h/再灌注24 h肾脏组织胶原因子mRNA表达、TGF-β1蛋白表达水平高于其他组(P<0.05),Smad7蛋白表达水平低于其他组(P<0.05)。大鼠脑组织缺血4 h/再灌注24 h时Masson染色结果显示肾脏组织出现胶质纤维沉积,并且炎症因子表达明显高于正常组和缺血4 h组(P<0.05)。结论:大鼠脑组织缺血4 h/再灌注24 h时可通过TGF-β1/Smad7通路的激活,增加肾脏组织Ⅰ型和Ⅲ型胶原蛋白表达,导致肾功能下降和肾脏组织纤维化。 |
[1] CAI Y M,ZHANG Y,ZHANG P B,et al.Neuroprotective effect of Shenqi Fuzheng injection pretreatment in aged rats with cerebral ischemia/reperfusion injury[J].Neural Regen Res,2016,11(1):94-100.
[2] TUTTOLOMONDO A,RAIMONDO D D,SCIACCA R D,et al.Effects of clinical and laboratory variables at admission and of in-hospital treatment with cardiovascular drugs on short term prognosis of ischemic stroke.The GIFA study[J].Nutr Metab Cardiovasc Dis,2013,23(7):642-649.
[3] FRASER P A.The role of free radical generation in increasing cerebrovascular permeability[J].Free Radic Biol Med,2011,51(5):967-977.
[4] RAIMONDO D D,TUTTOLOMONDO A,BUTTA C,et al.Effects of ACE-inhibitors and angiotensin receptor blockers on inflammation[J].Curr Pharm Des,2012,18(28):4385-4413.
[5] RONCO C,CHAWLA L S.Acute kidney injury:kidney attack must be prevented[J].Nat Rev Nephrol,2013,9(4):198-199.
[6] DAVENPORET A.AKI in a patient with cirrhosis and ascites[J].Clin J Am Soc Nephrol,2012,7(12):2041-2048.
[7] WEST S C,ARULKUMARAN N,IND P W,et al.Pulmonary-renal syndrome:a life threatening but treatable condition[J].Postgrad Med J,2013,89(1051):274-283.
[8] RITZ E.Intestinal-renal syndrome:mirage or reality?[J].Blood Purification,2011,31(1-3):70.
[9] KAWAMURA N,YOKOYAMA M,TNANKA H,et al.Acute kidney injury and intermediate-term renal function after clampless partial nephrectomy[J].Int J Urol,2019,26(1):113-118
[10] KHATRI M,HIMMELFARB J,ADAMS D,et al.Acute kidney injury is associated with increased hospital mortality after stroke[J].J Stroke Cerebrovasc Dis,2014,23(1):25-30.
[11] MERCADO M G,SMITH D K,GUARD E L.Acute kidney injury:diagnosis and management[J].Am Fam Physician,2019,100(11):687-694.
[12] RANGANATHAN P,JAYAKUMAR C,MOHAMED R,et al.Semaphorin 3A inactivation suppresses ischemia-reperfusion-induced inflammation and acute kidney injury[J].Am J Physiol Renal Physiol,2014,307(2):F183.
[13] NASONOVA S N,ZHIROV I V,LEDYAKHOVA M V,et al.Early diagnosis of acute renal injury in patients with acute decompensation of chronic heart failure[J].Terapevticheskii arkhiv,2019,91(4):67-73.
[14] LOPEZ-HERNANDEZ F J,LOPEZ-NOVOA J M.Role of TGF-β in chronic kidney disease:an integration of tubular,glomerular and vascular effects[J].Cell Tissue Res,2012,347(1):141-154.
[15] GU Y Y,LIU X S,HUANG X R,et al.Diverse role of TGF-beta in kidney disease[J].Front Cell Dev Biol,2020,2(28):121-123.
[16] CHUNG S,OVERSTREET J M,YAN L,et al.TGF-β promotes fibrosis after severe acute kidney injury by enhancing renal macrophage infiltration[J].JCI Insight,2018,3(21):e123563.
[17] ZHE G,PAN J,SHEN Q,et al.Mitochondrial dysfunction induces NLRP3 inflammasome activation during cerebral ischemia/reperfusion injury[J].J Neuroinflammation,2018,15(1):242."
|