>
网站首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们
最新消息:
T细胞免疫与宫颈癌关系的研究进展
作者:石笑瑜  周蓓蓓  来艺青  张丽娜 
单位:南京医科大学附属常州妇幼保健院 宫颈疾病诊治中心, 江苏 常州 213003
关键词:T细胞 宫颈癌 人乳头瘤病毒 免疫治疗 综述 
分类号:R737.33
出版年·卷·期(页码):2021·40·第六期(869-874)
摘要:

宫颈癌的发生是人乳头瘤病毒(HPV)与T细胞免疫反应共同作用的结果, T细胞免疫过程需要递呈细胞、细胞因子、共刺激因子等诸多因素参与。本文作者主要综述了HPV感染及宫颈癌的发生发展过程中T细胞的数量、功能等相关变化, 同时也概述了T细胞免疫治疗应用于宫颈癌的相关研究。

参考文献:

[1] ARBYN M, WEIDERPASS E, BRUNI L, et al. Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis[J]. Lancet Global Health, 2020, 8(2): 191-203.
[2] SCHIFFMAN M, DOORBAR J, WENTZENSEN N, et al. Carcinogenic human papillomavirus infection[J]. Nat Rev Dis Primers, 2016, 2(86): 1-20.
[3] 王家建, 董婕, 邓再兴, 等. HPV E6、E7 mRNA联合HPV 16型和HPV 18/45型分型检测作为子宫颈癌机会性筛查方法的探讨[J]. 中华妇产科杂志, 2019, 54(5): 301-306.
[4] COSTA A P F, GONÇALVES A K, MACHADO P R L, et al. Immune response to human papillomavirus one year after prophylactic vaccination with AS04-adjuvanted HPV-16/18 vaccine: HPV-specific IgG and IgA antibodies in the circulation and the cervix[J]. Asian Pac J Cancer Prev, 2018, 19(8): 2313-2317.
[5] CHAUHAN S R, BHARADWAJ M. Gearing up T-cell immunotherapy in cervical cancer[J]. Curr Probl Cancer, 2018, 42(2): 175-188.
[6] GAGLIANI N, HUBER S. Basic aspects of T helper cell differentiation[J]. Methods Mol Biol, 2017, 1514(2): 19-30.
[7] CHIANTORE M V, MANGINO G, IULIANO M, et al. IFN-β antiproliferative effect and miRNA regulation in Human Papilloma Virus E6-and E7-transformed keratinocytes[J]. Cytokine, 2017, 89(12): 235-238.
[8] CHEN Z F, DING J B, PANG N N, et al. The Th17/Treg balance and the expression of related cytokines in Uygur cervical cancer patients[J]. Diagn Pathol, 2013, 8: 61.
[9] LIN W, ZHANG H L, NIU Z Y, et al. The disease stage-associated imbalance of Th1/Th2 and Th17/Treg in uterine cervical cancer patients and their recovery with the reduction of tumor burden[J]. BMC Women's Health, 2020, 20: 126.
[10] GUÉRY L, HUGUES S. Th17 Cell plasticity and functions in cancer immunity[J]. Biomed Res Int, 2015, 2015: 314620.
[11] DEMARIA O, CORNEN S, DAËRON M, et al. Harnessing innate immunity in cancer therapy[J]. Nature, 2019, 574(7776): 45-56.
[12] TANAKA A, SAKAGUCHI S. Regulatory T cells in cancer immunotherapy[J]. Cell Res, 2017, 27(1): 109-118.
[13] HAUSEN H Z. Papillomaviruses and cancer: from basic studies to clinical application[J]. Nat Rev Cancer, 2002, 2(5): 342-350.
[14] MA Q, ZHAO M, WEI X, et al. Expressions of immune negative regulator FoxP3+Treg and PD-L1 protein in the immune microenvironment of cervical lesion[J]. Acta Academiae Medicinae Sinicae, 2017, 39(1): 128-132.
[15] HEEREN A M, DE BOER E, BLEEKER M C, et al. Nodal metastasis in cervical cancer occurs in clearly delineated fields of immune suppression in the pelvic lymph catchment area[J]. Oncotarget, 2015, 6(32): 32484-32493.
[16] DAS D, SARKAR B, MUKHOPADHYAY S, et al. An altered ratio of CD4+ and CD8+ T lymphocytes in cervical cancer tissues and peripheral blood-a prognostic clue?[J]. Asian Pac J Cancer Prev, 2018, 19(2): 471-478.
[17] SPINILLO A, DOMINONI M, BOSCHI A C, et al. Clinical significance of the interaction between human papillomavirus (HPV) type 16 and other high-risk human papillomaviruses in women with cervical intraepithelial neoplasia (CIN) and invasive cervical cancer[J]. J Oncol, 2020, 2020: 6508180.
[18] MCCLYMONT E, LEE M, ELWOOD C, et al. Cervical cancer screening in immunocompromised women[J]. J Obstet Gynaecol Can, 2019, 41(8): 1177-1180.
[19] MONNIER-BENOIT S, MAUNY F, RIETHMULLER D, et al. Immunohistochemical analysis of CD4+ and CD8+ T-cell subsets in high risk human papillomavirus-associated pre-malignant and malignant lesions of the uterine cervix[J]. Gynecol Oncol, 2006, 102(1): 22-31.
[20] SHAH W, YAN X, JING L, et al. A reversed CD4/CD8 ratio of tumor-infiltrating lymphocytes and a high percentage of CD4(+)FOXP3(+) regulatory T cells are significantly associated with clinical outcome in squamous cell carcinoma of the cervix[J]. Cell Mol Immunol, 2011, 8(1): 59-66.
[21] TAWFEIK A M, MORA A, OSMAN A, et al. Frequency of CD4+ regulatory T cells, CD8+ T cells, and human papilloma virus infection in Egyptian Women with breast cancer[J]. Int J Immunopathol Pharmacol, 2020, 34: 2058738420966822.
[22] REN C C, ZHU Y H, YANG L, et al. Diagnostic performance of HPV E6/E7 mRNA assay for detection of cervical high-grade intraepithelial neoplasia and cancer among women with ASCUS Papanicolaou smears[J]. Arch Gynecol Obstet, 2018, 297(2): 425-432.
[23] ROSSETTI R A M, LORENZI N P C, YOKOCHI K, et al. B lymphocytes can be activated to act as antigen presenting cells to promote anti-tumor responses[J]. PLoS One, 2018, 13(7): e0199034.
[24] BOL K F, SCHREIBELT G, RABOLD K, et al. The clinical application of cancer immunotherapy based on naturally circulating dendritic cells[J]. J Immunother Cancer, 2019, 7(1): 109.
[25] COLLIN M, BIGLEY V. Human dendritic cell subsets: an update[J]. Immunology, 2018, 154(1): 3-20.
[26] CHRISIKOS T T, ZHOU Y, SLONE N, et al. Molecular regulation of dendritic cell development and function in homeostasis, inflammation, and cancer[J]. Mol Immunol, 2019, 110(1): 24-39.
[27] WALCH-RUCKHEIM B, STRODER R, THEOBALD L, et al. Cervical cancer-instructed stromal fibroblasts enhance IL23 expression in dendritic cells to support expansion of Th17 cells[J]. Cancer Res, 2019, 79(7): 1573-1586.
[28] GUAN P, HOWELL-JONES R, LI N, et al. Human papillomavirus types in 115, 789 HPV-positive women: a meta-analysis from cervical infection to cancer[J]. Int J Cancer, 2012, 131(10): 2349-2359.
[29] SCHMIDT S V, SEIBERT S, WALCH-RVCKHEIM B, et al. Correction: RIPK3 expression in cervical cancer cells is required for PolyIC-induced necroptosis, IL-1α release, and efficient paracrine dendritic cell activation[J]. Oncotarget, 2019, 10(43): 4503-4504.
[30] CHEN S S, LV M F, FANG S, et al. Poly(I: C) enhanced anti-cervical cancer immunities induced by dendritic cells-derived exosomes[J]. Int J Biol Macromol, 2018, 113(2): 1182-1187.
[31] XIAO M Z, FENG Y, CAO G M, et al. A novel MtHSP70-FPR1 fusion protein enhances cytotoxic T lymphocyte responses to cervical cancer cells by activating human monocyte-derived dendritic cells via the p38 MAPK signaling pathway[J]. Biochem Biophys Res Commun, 2018, 503(3): 2108-2116.
[32] FAIRCHILD P J, DAVIES T J. Boosting antitumour immunity through targeted delivery of interferon-α[J]. Trends Mol Med, 2019, 25(11): 935-937.
[33] THOMAS S J, SNOWDEN J A, ZEIDLER M P, et al. The role of JAK/STAT signalling in the pathogenesis, prognosis and treatment of solid tumours[J]. Br J Cancer, 2015, 113(3): 365-371.
[34] NAMVAR A, PANAHI H A, AGI E, et al. Development of HPV(16, 18, 31, 45) E5 and E7 peptides-based vaccines predicted by immunoinformatics tools[J]. Biotechnol Lett, 2020, 42(3): 403-418.
[35] ZHANG T, JIAO J, JIAO X L, et al. Aberrant frequency of TNFR2(+) Treg and related cytokines in patients with CIN and cervical cancer[J]. Oncotarget, 2018, 9(4): 5073-5083.
[36] AMARO-FILHO S M, PEREIRA C C B, FELIX S P, et al. HPV DNA methylation at the early promoter and E1/E2 integrity: A comparison between HPV16, HPV18 and HPV45 in cervical cancer[J]. Papillomavirus Res, 2018, 5(4): 172-179.
[37] TORRES-POVEDA K, BURGUETE-GARCÍA A I, BAHENA-ROMÁN M, et al. Risk allelic load in Th2 and Th3 cytokines genes as biomarker of susceptibility to HPV-16 positive cervical cancer: a case control study[J]. BMC Cancer, 2016, 16: 330.
[38] MANGINO G, ZANGRILLO M S, CHIANTORE M V, et al. Pro-inflammatory cytokines and chemokines in HPV-positive cancer cells[J]. Cytokine, 2015, 76(1): 86.
[39] IWATA T, FUJII T, MORII K, et al. Cytokine profile in cervical mucosa of Japanese patients with cervical intraepithelial neoplasia[J]. Int J Clin Oncol, 2015, 20(1): 126-133.
[40] WOODHAM A W, YAN L, SKEATE J G, et al. T cell ignorance is bliss: T cells are not tolerized by Langerhans cells presenting human papillomavirus antigens in the absence of costimulation[J]. Papillomavirus Res, 2016, 2(1): 21-30.
[41] WESTRICH J A, WARREN C J, PYEON D. Evasion of host immune defenses by human papillomavirus[J]. Virus Res, 2017, 231(11): 21-33.
[42] DA SILVA D M, WOODHAM A W, SKEATE J G, et al. Langerhans cells from women with cervical precancerous lesions become functionally responsive against human papillomavirus after activation with stabilized Poly-I: C[J]. Clin Immunol, 2015, 161(2): 197-208.
[43] LEUNG J, SUH W K. The CD28-B7 Family in anti-tumor immunity: emerging concepts in cancer immunotherapy[J]. Immune Netw, 2014, 14(6): 265-276.
[44] LEE S J, YANG A, WU T C, et al. Immunotherapy for human papillomavirus-associated disease and cervical cancer: review of clinical and translational research[J]. J Gynecol Oncol, 2016, 27(5): e51.
[45] STEVANOVI S, DRAPER L M, LANGHAN M M, et al. Complete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted tumor-infiltrating T cells[J]. J Clin Oncol, 2015, 33(14): 1543-1550.
[46] ESTÊVÃO D, COSTA N R, GIL DA COSTA R M, et al. Hallmarks of HPV carcinogenesis: The role of E6, E7 and E5 oncoproteins in cellular malignancy[J]. Biochim Biophys Acta Gene Regul Mech, 2019, 1862(2): 153-162.
[47] KAWANA K, ADACHI K, KOJIMA S, et al. Oral vaccination against HPV E7 for treatment of cervical intraepithelial neo-plasia grade 3 (CIN3) elicits E7-specific mucosal immunity in the cervix of CIN3 patients[J]. Vaccine, 2014, 32(47): 6233-6239.
[48] GOMEZ-GUTIERREZ J G, ELPEK K G, MONTES DE OCA-LUNA R, et al. Vaccination with an adenoviral vector expressing calreticulin-human papillomavirus 16 E7 fusion protein eradicates E7 expressing established tumors in mice[J]. Cancer Immunol Immunother, 2007, 56(7): 997-1007.
[49] KIM T J, JIN H T, HUR S Y, et al. Clearance of persistent HPV infection and cervical lesion by therapeutic DNA vaccine in CIN3 patients[J]. Nat Commun, 2014, 5: 5317.

服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
提示:您还未登录,请登录!点此登录
您是第 466831 位访问者


copyright ©《东南大学学报(医学版)》编辑部
联系电话:025-83272481 83272483
电子邮件:
bjb@pub.seu.edu.cn

本系统由北京博渊星辰网络科技有限公司设计开发 技术支持电话:010-63361626

苏ICP备09058364