[1] LAMBERT S, JOLMA A, CAMPITELLI L, et al. The human transcription factors[J]. Cell, 2018, 175(2): 598-599.
[2] TAKEI H, KOBAYASHI S. Targeting transcription factors in acute myeloid leukemia[J]. Int J Hematol, 2019, 109(1): 28-34.
[3] KRISHNA S, MAJUMDAR I, GRISHIN N. Structural classification of zinc fingers: survey and summary[J]. Nucleic Acids Res, 2003, 31(2): 532-550.
[4] SCHMITGES F, RADOVANI E, NAJAFABADI H, et al. Multiparameter functional diversity of human C2H2 zinc finger proteins[J]. Genome Res, 2016, 26(12): 1742-1752.
[5] CASSANDRI M, SMIRNOV A, NOVELLI F, et al. Zinc-finger proteins in health and disease[J]. Cell Death Discov, 2017, 3: 17071.
[6] JEN J, WANG Y. Zinc finger proteins in cancer progression[J]. J Biomed Sci, 2016, 23(1): 53.
[7] LANDER E. Initial impact of the sequencing of the human genome[J]. Nature, 2011, 470(7333): 187-197.
[8] TUPLER R, PERINI G, GREEN M. Expressing the human genome[J]. Nature, 2001, 409(6822): 832-833.
[9] KLUG A. The discovery of zinc fingers and their applications in gene regulation and genome manipulation[J]. Annu Rev Biochem, 2010, 79: 213-231.
[10] 朱玉贤, 李毅, 郑晓峰, 等. 现代分子生物学[M]. 北京: 高等教育出版社, 2013.
[11] WEAVER R F. Molecular Biology[M]. Fifth Edition. Singapore: McGraw-Hill, 2012.
[12] DUTTA S, MADAN S, SUNDAR D. Exploiting the recognition code for elucidating the mechanism of zinc finger protein-DNA interactions[J]. BMC Genomics, 2016, 17: 1037.
[13] HE L, FAN X, LI Y, et al. Overexpression of zinc finger protein 384 (ZNF 384), a poor prognostic predictor, promotes cell growth by upregulating the expression of Cyclin D1 in Hepatocellular carcinoma[J]. Cell Death Dis, 2019, 10(6): 444.
[14] XING Y, REN S, AI L, et al. ZNF692 promotes colon adenocarcinoma cell growth and metastasis by activating the PI3K/AKT pathway[J]. Int J Oncol, 2019, 54(5): 1691-1703.
[15] ZHU B, PAN Y, ZHENG X, et al. A clinical, biologic and mechanistic analysis of the role of ZNF692 in cervical cancer[J]. Gynecol Oncol, 2019, 152(2): 396-407.
[16] WANG S, WANG C, HU Y, et al. ZNF703 promotes tumor progression in ovarian cancer by interacting with HE4 and epigenetically regulating PEA15[J]. J Exp Clin Canc Res, 2020, 39(1): 264.
[17] GŁODZIK D, PURDIE C, RYE I, et al. Mutational mechanisms of amplifications revealed by analysis of clustered rearrangements in breast cancers[J]. Ann Oncol, 2018, 29(11): 2223-2231.
[18] SUSKE G. The SP-family of transcription factors[J]. Gene, 1999, 238(2): 291-300.
[19] WANG H, XU H, MA F, et al. Zinc finger protein 703 induces EMT and sorafenib resistance in hepatocellular carcinoma by transactivating CLDN4 expression[J]. Cell Death Dis, 2020, 11(4): 225.
[20] 管成剑. 锌指蛋白774在肝细胞肝癌中的生物学功能及分子机制的研究[D]. 北京: 中国人民解放军医学院, 2019.
[21] YANG P, WANG Y, MACFARLAN T. The role of KRAB-ZFPs in transposable element repression and mammalian evolution[J]. Trends Genet, 2017, 33(11): 871-881.
[22] ECCO G, IMBEAULT M, TRONO D. KRAB zinc finger proteins[J]. Development, 2017, 144(15): 2719-2729.
[23] SUN R, XIANG T, TANG J, et al. 19q13 KRAB zinc-finger protein ZNF471 activates MAPK10/JNK3 signaling but is frequently silenced by promoter CpG methylation in esophageal cancer[J]. Theranostics, 2020, 10(5): 2243-2259.
[24] CAO L, WANG S, ZHANG Y, et al. Zinc-finger protein 471 suppresses gastric cancer through transcriptionally repressing downstream oncogenic PLS3 and TFAP2A[J]. Oncogene, 2018, 37(26): 3601-3616.
[25] TAO C, LUO J, TANG J, et al. The tumor suppressor Zinc finger protein 471 suppresses breast cancer growth and metastasis through inhibiting AKT and Wnt/β-catenin signaling[J]. Clin Epigenetics, 2020, 12(1): 173.
[26] SYAFRUDDIN S, RODRIGUES P, VOJTASOVA E, et al. A KLF6-driven transcriptional network links lipid homeostasis and tumour growth in renal carcinoma[J]. Nat Commun, 2019, 10(1): 1152.
[27] GAO Y, LI H, MA X, et al. KLF6 suppresses metastasis of clear cell renal cell carcinoma via transcriptional repression of E2F1[J]. Cancer Res, 2017, 77(2): 330-342.
[28] LORENZ P, DIETMANN S, WILHELM T, et al. The ancient mammalian KRAB zinc finger gene cluster on human chromosome 8q24.3 illustrates principles of C2H2 zinc finger evolution associated with unique expression profiles in human tissues[J]. BMC Genomics, 2010, 11: 206.
[29] ZHONG C, CHEN C, YAO F, et al. ZNF251 promotes the progression of lung cancer by activating ERK signaling[J]. Cancer Sci, 2020, 111(9): 3236-3244.
[30] VO A, SWAGGART K, WOO A, et al. Dusp6 is a genetic modifier of growth through enhanced ERK activity[J]. Hum Mol Genet, 2019, 28(2): 279-289.
[31] CASSANDRI M, BUTERA A, AMELIO I, et al. ZNF750 represses breast cancer invasion via epigenetic control of prometastatic genes[J]. Oncogene, 2020, 39(22): 4331-4343.
[32] BOXER L, BARAJAS B, TAO S, et al. ZNF750 interacts with KLF4 and RCOR1, KDM1A, and CTBP1/2 chromatin regulators to repress epidermal progenitor genes and induce differentiation genes[J]. Gene Dev, 2014, 28(18): 2013-2026.
[33] BI Y, GUO S, XU X, et al. Decreased ZNF750 promotes angiogenesis in a paracrine manner via activating DANCR/miR-4707-3p/FOXC2 axis in esophageal squamous cell carcinoma[J]. Cell Death Dis, 2020, 11(4): 296.
[34] HONG R, ZHANG W, XIA X, et al. Preventing BRCA1/ZBRK1 repressor complex binding to the GOT2 promoter results in accelerated aspartate biosynthesis and promotion of cell proliferation[J]. Mol Oncol, 2019, 13(4): 959-977.
[35] FURUTA S, WANG J, WEI S, et al. Removal of BRCA1/CtIP/ZBRK1 repressor complex on ANG1 promoter leads to accelerated mammary tumor growth contributed by prominent vasculature[J]. Cancer Cell, 2006, 10(1): 13-24.
[36] GREENBERG M, BOURC'HIS D. The diverse roles of DNA methylation in mammalian development and disease[J]. Nat Rev Mol Cell Bio, 2019, 20(10): 590-607.
[37] REN R, HORTON J, ZHANG X, et al. Detecting and interpreting DNA methylation marks[J]. Curr Opin Struc Biol, 2018, 53: 88-99.
[38] CHEN L, WU X, XIE H, et al. ZFP57 suppress proliferation of breast cancer cells through down-regulation of MEST-mediated Wnt/β-catenin signalling pathway[J]. Cell Death Dis, 2019, 10(3): 169.
[39] WANG S, CHENG Y, DU W, et al. Zinc-finger protein 545 is a novel tumour suppressor that acts by inhibiting ribosomal RNA transcription in gastric cancer[J]. Gut, 2013, 62(6): 833-841.
[40] VENKATESH S, WORKMAN J. Histone exchange, chromatin structure and the regulation of transcription[J]. Nat Rev Mol Cell Bio, 2015, 16(3): 178-189.
[41] JEN J, LIN L, CHEN H, et al. Oncoprotein ZNF322A transcriptionally deregulates alpha-adducin, cyclin D1 and p53 to promote tumor growth and metastasis in lung cancer[J]. Oncogene, 2016, 35(18): 2357-2369.
[42] JEN J, LIU C, CHEN Y, et al. Oncogenic zinc finger protein ZNF322A promotes stem cell-like properties in lung cancer through transcriptional suppression of c-Myc expression[J]. Cell Death Differ, 2019, 26(7): 1283-1298.
[43] ND T, J L, AK L, et al. Transcription imparts architecture, function and logic to enhancer units[J]. Nat Genet, 2020, 52(10): 1067-1075.
[44] GREIVE S, VON HIPPEL P. Thinking quantitatively about transcriptional regulation[J]. Nat Rev Mol Cell Bio, 2005, 6(3): 221-232.
[45] SOBOCI SKA J, MOLENDA S, MACHNIK M, et al. KRAB-ZFP transcriptional regulators acting as oncogenes and tumor suppressors: an overview[J]. Int J Mol Sci, 2021, 22(4): 2212.
[46] CESARO E, SODARO G, MONTANO G, et al. The complex role of the ZNF224 transcription factor in cancer[J]. Adv Protein Chem Str, 2017, 107: 191-222.
[47] 韦晔, 李科, 卢大儒, 等. 染色质靶向酶切测序技术(CUT & RUN, CUT & Tag)的发展和应用[J]. 国际遗传学杂志, 2021, 44(1): 24-31.
[48] KAYA-OKUR H, JANSSENS D, HENIKOFF J, et al. Efficient low-cost chromatin profiling with CUT & Tag[J]. Nat Protoc, 2020, 15(10): 3264-3283.
[49] KAYA-OKUR H, WU S, CODOMO C, et al. CUT & Tag for efficient epigenomic profiling of small samples and single cells[J]. Nat Commun, 2019, 10(1): 1930.
[50] 林达, 张斯姮, 张智慧, 等. 探索染色质三维构象的"工具箱"研究进展[J]. 中国科学: 生命科学, 2020, 50(5): 497-505. |