[1] OTROCK Z K, LIU C, GROSSMAN B J.Transfusion-related acute lung injury risk mitigation:an update[J]. Vox Sang, 2017, 112(8):694-703.
[2] SEMPLE J W, REBETZ J, KAPUR R.Transfusion-associated circulatory overload and transfusion-related acute lung injury[J]. Blood, 2019, 133(17):1840-1853.
[3] KULDANEK S A, KELHER M, SILLIMAN C C.Risk factors, management and prevention of transfusion-related acute lung injury:a comprehensive update[J]. Expert Rev Hematol, 2019, 12(9):773-785.
[4] JONGERIUS I, PORCELIJN L, VAN BEEK A E, et al. The role of complement in transfusion-related acute lung injury[J]. Transfus Med Rev, 2019, 33(4):236-242.
[5] 何芮, 李玲, 卞茂红, 等. 输血相关急性肺损伤的研究进展[J]. 中国输血杂志, 2018, 31(7):804-808.
[6] 葛均波, 徐永健.内科学[M]. 8版.北京:人民卫生出版社, 2013:543.
[7] KLEINMAN S, CAULFIELD T, CHAN P, et al. Toward an understanding of transfusion-related acute lung injury:statement of a consensus panel[J]. Transfusion, 2004, 44(12):1774-1789.
[8] SEMPLE J W, MCVEY M J, KIM M, et al. Targeting transfusion-related acute lung injury:the journey from basic science to novel therapie[J]. Crit Care Med, 2018, 46(5):e452-e458.
[9] AKAGI Y, MURATA S, YAMASHITA Y, et al. Two episodes of transfusion-related acute lung injury (trali) occurring within a short period:a case report[J]. Intern Med, 2020, 59(20):2577-2581.
[10] KHOY K, NGUYEN M V C, MASSON D, et al. Transfusion-related acute lung injury:critical neutrophil activation by anti-HLA-A2 antibodies for endothelial permeability[J]. Transfusion, 2017, 57(7):1699-1708.
[11] 耿春静.围手术期输血相关急性肺损伤的研究进展[J]. 中国微创外科杂志, 2019, 19(1):65-67, 89.
[12] 罗伟峰, 游冉冉, 付涌水, 等. 细胞因子及C-反应蛋白与输血相关急性肺损伤的研究进展[J]. 中国输血杂志, 2019, 32(3):309-312.
[13] KAPUR R, KASETTY G, REBETZ J, et al. Osteopontin mediates murine transfusion-related acute lung injury via stimulation of pulmonary neutrophil accumulation[J]. Blood, 2019, 134(1):74-84.
[14] CHEN B Z, XIA R.Pro-inflammatory effects after platelet transfusion:a review[J]. Vox Sang, 2020, 115(5):349-357.
[15] KIM J, NGUYEN T T T, LI Y, et al. Contrasting effects of stored allogeneic red blood cells and their supernatants on permeability and inflammatory responses in human pulmonary endothelial cells[J]. Am J Physiol Lung Cell Mol Physiol, 2020, 318(3):L533-L548.
[16] PFEIFER R, ANDRUSZKOW J H, BUSCH D, et al. Development of a standardized trauma-related lung injury model[J]. J Surg Res, 2015, 196(2):388-394.
[17] MAŚLANKA K, UHRYNOWSKA M, ŁOPACZ P, et al. Analysis of leucocyte antibodies, cytokines, lysophospholipids and cell microparticles in blood components implicated in post-transfusion reactions with dyspnoea[J]. Vox Sang, 2015, 108(1):27-36.
[18] SEMPLE J W, REBETZ J, KAPUR R.Transfusion-associated circulatory overload and transfusion-related acute lung injury[J]. Blood, 2019, 133(17):1840-1853.
[19] FAUST H, LAM L M, HOTZ M J, et al. RAGE interacts with the necroptotic protein RIPK3 and mediates transfusion-induced danger signal release [J]. Vox Sang, 2020, 115:729-734.
[20] GARCÍA-ROA M, DEL CARMEN M, BOBES A M, et al. Red blood cell storage time and transfusion:current practice, concerns and future perspectives[J]. Blood Transfus, 2017, 15(3):222-231.
[21] KOCH C G, DUNCAN A I, FIGUEROA P, et al. Real age:red blood cell aging during storage[J]. Ann Thorac Surg, 2019, 107(3):973-980.
[22] MANGALMURTI N S, XIONG Z, HULVER M, et al. Loss of red cell chemokine scavenging promotes transfusion-related lung inflammation[J]. Blood, 2009, 113(5):1158-1166.
[23] MIDDELBURG R A, BORKENT-RAVEN B A, JANSSEN M P, et al. Storage time of blood products and transfusion-related acute lung injury[J]. Transfusion, 2012, 52(3):658-667. |