[1] DUGO M,DEVECCHI A,DE CECCO L,et al.Focal Recurrent Copy Number Alterations Characterize Disease Relapse in High Grade Serous Ovarian Cancer Patients with Good Clinical Prognosis:A Pilot Study[J].Genes (Basel),2019,10(9):678.
[2] LECA J,MARTINEZ S,LAC S,et al.Cancer-associated fibroblast-derived annexin A6+extracellular vesicles support pancreatic cancer aggressiveness[J].J Clin Invest,2016,126(11):4140-4156.
[3] FRANCO O E,SHAW A K,STRAND D W,et al.Cancer associated fibroblasts in cancer pathogenesis[J].Semin Cell Dev Biol,2010,21(1):33-39.
[4] NISHIKAWA H,SAKAGUCHI S.Regulatory T cells in cancer immunotherapy[J].Curr Opin Immunol,2014,27:1-7.
[5] PEPPER M S.Transforming growth factor-beta:vasculogenesis,angiogenesis,and vessel wall integrity[J].Cytokine Growth Factor Rev,1997,8(1):21-43.
[6] WEBB J R,MILNE K,WATSON P,et al.Tumor-infiltrating lymphocytes expressing the tissue resident memory marker CD103 are associated with increased survival in high-grade serous ovarian cancer[J].Clin Cancer Res,2014,20(2):434-444.
[7] KOMDEUR F L,WOUTERS M C,WORKEL H H,et al.CD103+intraepithelial T cells in high-grade serous ovarian cancer are phenotypically diverse TCR alpha beta+CD8 alpha beta+T cells that can be targeted for cancer immunotherapy[J].Oncotarget,2016,7(46):75130-75144.
[8] KE X,ZHANG S,WU M,et al.Tumor-associated macrophages promote invasion via Toll-like receptors signaling in patients with ovarian cancer[J].Int Immunopharmacol,2016,40:184-195.
[9] SHI X,SHIAO S L.The role of macrophage phenotype in regulating the response to radiation therapy[J].Transl Res,2018,191:64-80.
[10] MARVEL D,GABRILOVICH D I.Myeloid-derived suppressor cells in the tumor microenvironment:expect the unexpected[J].J Clin Invest,2015,125(9):3356-3364.
[11] GABRILOVICH D I,OSTRAND-ROSENBERG S,BRONTE V.Coordinated regulation of myeloid cells by tumours[J].Nat Rev Immunol,2012,12(4):253-268.
[12] LIN H,WEI S,HURT E M,et al.Host expression of PD-L1 determines efficacy of PD-L1 pathway blockade-mediated tumor regression[J].J Clin Invest,2018,128(2):805-815.
[13] CAI D L,JIN L P.Immune cell population in ovarian tumor microenvironment[J].J Cancer,2017,8(15):2915-2923.
[14] CHEN F,HOU M,YE F,et al.Ovarian cancer cells induce peripheral mature dendritic cells to differentiate into macrophagelike cells in vitro[J].Int J Gynecol Cancer,2009,19(9):1487-1493.
[15] LABIDI-GALY S I,SISIRAK V,MEEUS P,et al.Quantitative and functional alterations of plasmacytoid dendritic cells contribute to immune tolerance in ovarian cancer[J].Cancer Res,2011,71(16):5423-5434.
[16] TANIZAKI Y,KOBAYASHI A,TOUJIMA S,et al.Indoleamine 2,3-dioxygenase promotes peritoneal metastasis of ovarian cancer by inducing an immunosuppressive environment[J].Cancer Sci,2014,105(8):966-973.
[17] MARIATHASAN S,TURLEY S J,NICKLES D,et al.TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells[J].Nature,2018,554(7693):544-548.
[18] 熊爱为,谢静燕,赵树立.卵巢癌腹水来源微囊体促进卵巢癌SKOV3细胞增殖和耐药[J].东南大学学报(医学版),2016,35(1):71-75.
[19] MCGOUGH I J,VINCENT J P.Exosomes in developmental signalling[J].Development,2016,143(14):2482-2493.
[20] FAROOQI A A,DESAI N N,QURESHI M Z,et al.Exosome biogenesis,bioactivities and functions as new delivery systems of natural compounds[J].Biotechnol Adv,2018,36(1):328-334.
[21] NAKAMURA K,SAWADA K,KINOSE Y,et al.Exosomes promote ovarian cancer cell invasion through transfer of CD44 to peritoneal mesothelial cells[J].Mol Cancer Res,2017,15(1):78-92.
[22] 李玉娟,赵树立,谢静燕.外泌体在卵巢癌中的研究进展[J].东南大学学报(医学版),2017,36(2):282-285.
[23] ZHOU M,WEN Z,CHENG F,et al.Tumor-released autophagosomes induce IL-10-producing B cells with suppressive activity on T lymphocytes via TLR2-MyD88-NF-kappaB signal pathway[J].Oncoimmunology,2016,5(7):e1180485.
[24] KOCATURK N M,AKKOC Y,KIG C,et al.Autophagy as a molecular target for cancer treatment[J].Eur J Pharm Sci,2019,134:116-137.
[25] ZHANG M,KENNY S J,GE L,et al.Translocation of interleukin-1beta into a vesicle intermediate in autophagy-mediated secretion[J].Elife,2015,4:e11205.
[26] NUCHEL J,GHATAK S,ZUK A V,et al.TGFB1 is secreted through an unconventional pathway dependent on the autophagic machinery and cytoskeletal regulators[J].Autophagy,2018,14(3):465-486.
[27] BEL S,PENDSE M,WANG Y,et al.Paneth cells secrete lysozyme via secretory autophagy during bacterial infection of the intestine[J].Science,2017,357(6355):1047-1052.
[28] WEN Z,LIU H,GAO R,et al.Tumor cell-released autophagosomes (TRAPs) promote immunosuppression through induction of M2-like macrophages with increased expression of PD-L1[J].J Immunother Cancer,2018,6(1):151.
[29] GU D,AO X,YANG Y,et al.Soluble immune checkpoints in cancer:production,function and biological significance[J].J Immunother Cancer,2018,6(1):132.
[30] CHEN Y Q,LI P C,PAN N,et al.Tumor-released autophagosomes induces CD4(+) T cell-mediated immunosuppression via a TLR2-IL-6 cascade[J].J Immunother Cancer,2019,7(1):178.
[31] GAO R,MA J,WEN Z,et al.Tumor cell-released autophagosomes (TRAP) enhance apoptosis and immunosuppressive functions of neutrophils[J].Oncoimmunology,2018,7(6):e1438108.
[32] SIEGEL R L,MILLER K D,JEMAL A.Cancer statistics,2019[J].CA Cancer J Clin,2019,69(1):7-34.
[33] POGGE V S E,REINARTZ S,WAGER U,et al.Tumor-host cell interactions in ovarian cancer:pathways to therapy failure[J].Trends Cancer,2017,3(2):137-148.
[34] WANG L,WANG Q,XU Y,et al.Advances in the treatment of ovarian cancer using PARP inhibitors and the underlying mechanism of resistance[J].Curr Drug Targets,2020,21(2):167-178.
[35] MIRZA M R,BERGMANN T K,MAU-SORENSEN M,et al.A phase Ⅰ study of the PARP inhibitor niraparib in combination with bevacizumab in platinum-sensitive epithelial ovarian cancer:NSGO AVANOVA1/ENGOT-OV24[J].Cancer Chemother Pharmacol,2019,84(4):791-798.
[36] JAMES N E,WOODMAN M,DISILVESTRO P A,et al.The perfect combination:enhancing patient response to PD-1-based therapies in epithelial ovarian cancer[J].Cancers(Basel),2020,12(8):2150. |