>
网站首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们
最新消息:
肺炎新生儿肠道菌群及其代谢产物的分析
作者:陈善佳1  王欣2  尹迪1  张华婷1  张文静1  胡勇1 
单位:1. 上海交通大学附属儿童医院/上海市儿童医院 新生儿科, 上海 200062;
2. 浙江省农科院 农产品质量安全因子与风险防控重点实验室, 浙江 杭州 310021
关键词:肺炎 短链脂肪酸 肠道菌群 新生儿 
分类号:R722.B5
出版年·卷·期(页码):2020·39·第三期(287-292)
摘要:

目的:研究肺炎新生儿粪便中肠道细菌代谢产物短链脂肪酸水平及菌群结构与正常新生儿肠道微生态的区别。方法:收集25例上海市儿童医院诊断为肺炎新生儿的粪便,通过气相色谱技术测定短链脂肪酸;25例新生儿中男13例,女12例,日龄(17.60±5.07) d。11例肺炎新生儿的粪便用于肠道菌群16S rDNA测序;11例新生儿中男5例,女6例,日龄(20.00±5.40) d。另收集25例正常新生儿的粪便用于测定短链脂肪酸;25例新生儿中男14例,女11例,日龄(18.40±2.40) d。10例正常新生儿的粪便用于肠道菌群16S rDNA测序;10例新生儿中男6例,女4例,日龄(19.00±1.70) d。结果:肺炎组短链脂肪酸中乙酸、丙酸、丁酸、戊酸、异丁酸浓度与正常组的差异均有统计学意义(P<0.05)。菌群测序结果显示,肺炎组菌群β-多样性显著低于正常组。在细菌门分类水平上两组差异无统计学意义;属水平比较,肺炎组中肠球菌属、双歧杆菌属的相对丰度显著高于正常组(P<0.05),正常组中乳球菌属显著升高(P<0.05)。结论:粪便短链脂肪酸水平及肠道菌群在肺炎新生儿中出现变化,提示肺部炎症反应对肠道微生态存在影响,这为益生菌辅助治疗肺炎提供一定临床研究依据。

Objective:To study the difference of fecal short chain fatty acid (SCFA) and the structure of colonic microbiota between neonates with pneumonia and normal neonates. Methods:Twenty five fecal samples of neonatal pneumonia diagnosed in Shanghai Children's hospital were collected for the determination of SCFA by gas chromatography, including 13 males and 12 females, with a age of (17.60±5.07) days. Eleven fecal samples of neonatal pneumonia were collected for 16S rDNA sequencing, including 5 males and 6 females, with a age of (20.00±5.40) days. Twenty five fecal samples of normal newborns were collected for the determination of SCFA, including 14 males and 11 females, with a age of (18.40±2.40) days, and 10 fecal samples of normal newborns were used for 16S rDNA sequencing, including 6 males and 4 females, with a age of (19.00±1.70) days. Results:The concentrations of acetic acid, propionic acid, butyric acid,valeric acid and isobutyric acid in pneumonia group were statistical significantly different from those of normal newborns (P<0.05). In the analysis of colonic microbiota, the diversity of intestinal microbiota was significantly decreased in pneumonia group, as evidenced by the β-diversity analysis. There was no significant difference between the two groups at the phylum level. The relative abundance of Enterococcus and Bifidobacterium in pneumonia group was significantly higher than that in normal group (P<0.05), while the relative abundance of Lactococcus was significantly higher in normal group. Conclusion:Fecal short chain fatty acid levels and intestinal flora changes in children with neonatal pneumonia, suggesting the effect of pulmonary inflammatory response on intestinal microecology, which provides a clinical basis for probiotic adjuvant treatment of pneumonia.

参考文献:

[1] 尚利宏,梁盼盼,杨真录,等.2010-2015年296例住院新生儿死亡病例分析[J].中国妇幼保健,2017,32(16):3840-3843.
[2] 培菲康防治婴幼儿肺炎继发腹泻协作组.培菲康预防婴幼儿肺炎继发腹泻随机、多中心临床研究[J].临床儿科杂志,2006,24(10):848-849,856.
[3] LI L,WANG F,LIU Y,et al.Intestinal microbiota dysbiosis in children with recurrent respiratory tract infections[J].Microb Pathog,2019,136:103709.
[4] 邵肖梅,叶鸿瑁,丘小汕.实用新生儿学[M].4版.北京:人民卫生出版社,2011:1-930.
[5] McALEER J P.Contributions of the intestinal microbiome in lung immunity[J].Eur J Immunol,2018,48(1):39-49.
[6] LIN L.Role of intestinal microbiota and metabolites on gut homeostasis and human diseases[J].BMC Immunol,2017,18(1):2.
[7] MASLOWSKI K M,VIEIRA A T,NG A,et al.Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43[J].Nature,2009,461(7268):1282-1286.
[8] NEISH A S.Microbes in gastrointestinal health and disease [J] .Gastroenterology,2009,136(1):65-80.
[9] BASSON A,TROTTER A,RODRIGUEZ-PALACIOS A,et al.Mucosal interactions between genetics,diet,and microbiome in inflammatory bowel disease[J].Front Immunol,2016,7:290.
[10] MAGALHAES J G,TATTOLI I.The intestinal epithelial barrier:how to distinguish between the microbial flora and pathogens[J].Semin Immunol,2007,19(2):106-115.
[11] ARVANS D L,VAVRICKA S R,REN H,et al.Luminal bacterial flora determines physiological expression of intestinal epithelial cytoprotective heat shock proteins 25 and 72[J].Am J Physiol Gastrointest Liver Physiol,2005,288(4):G696-704.
[12] FAITH J J,GURUGE J L,CHARBONNEAU M,et al.The long-term stability of the human gut microbiota[J].Science,2013,341(6141):1237439.
[13] MATSUKI T,YAHAGI K,MORI H,et al.A key genetic factor for fucosyllactose utilization affects infant gut microbiota development[J].Nat Comm,2016,7(1):1-12.
[14] EDWARDS C A,PARRETT A M,BALMER S E.Faecal short chain fatty acids in breast-fed and formula-fed babies[J].Acta Paediatr,1994,83(5):459-462.
[15] THURSBY E.Introduction to the human gut microbiota[J].Biochem J,2017,474(11):1823-1836.
[16] GRAY J,OEHRLE K,WORTHEN G,et al.Intestinal commensal bacteria mediate lung mucosal immunity and promote resistance of newborn mice to infection[J].Sci Transl Med,2017,9(376):1-13.
[17] REYMAN M,VAN HOUTEN M A,VAN BAARLE D,et al.Impact of delivery mode-associated gut microbiota dynamics on health in the first year of life[J].Nat Comm,2019,10(1):4997.
[18] SHIN N R,WHON T W.Proteobacteria:microbial signature of dysbiosis in gut microbiota[J].Trends Biotechnol,2015,33(9):496-503.
[19] 李伟然,汪志凌,万朝敏.肠道菌群与"肠-肺"轴之间的关系[J].中华实用儿科临床杂志,2017,32(7):548-551.
[20] PANIGRAHI P,PARIDA S,NANDA N C,et al.A randomized synbiotic trial to prevent sepsis among infants in rural India[J].Nature,2017,548(7668):407-412.
[21] VIEIRA A T,ROCHA V M,TAVARES L,et al.Control of Klebsiella pneumoniae pulmonary infection and immunomodulation by oral treatment with the commensal probiotic Bifidobacterium longum 5(1A)[J].Microbes Infect,2016,18(3):180-189.

服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
提示:您还未登录,请登录!点此登录
您是第 237987 位访问者


copyright ©《东南大学学报(医学版)》编辑部
联系电话:025-87232481 83272483
电子邮件:
bjb@pub.seu.edu.cn

苏ICP备09058364