>
网站首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们
最新消息:
独立成分分析在抑郁症研究中的应用进展
作者:张嫣然1  袁勇贵2 
单位:1. 东南大学 医学院, 江苏 南京 210009;
2. 东南大学附属中大医院 心理精神科, 江苏 南京 210009
关键词:抑郁症 独立成分分析 脑影像 文献综述 
分类号:R749.4
出版年·卷·期(页码):2020·39·第二期(221-225)
摘要:

独立成分分析(ICA)是一种盲源分离技术,能在源信号和混合信息未知的情况下直接从观测信号中提取源信号,近年来已被广泛应用于功能磁共振成像(fMRI)等脑影像数据分析中。作者简单介绍ICA的定义、基本原理及分类,并从机制、诊断和治疗3个方面入手,就ICA在抑郁症研究中的应用进展作一综述。

参考文献:

[1] ZHI D, CALHOUN V D, LV L, et al. Aberrant dynamic functional network connectivity and graph properties in major depressive disorder[J]. Front Psychiatry, 2018, 9:339.
[2] 董云云,芦彩林. ICA+DMN方法在抑郁症诊断中的应用[J]. 山西师范大学学报(自然科学版),2018,32(1):28-32.
[3] GAUDIO S, WIEMERSLAGE L, BROOKS S J, et al. A systematic review of resting-state functional-MRI studies in anorexia nervosa:evidence for functional connectivity impairment in cognitive control and visuospatial and body-signal integration[J]. Neurosci Biobehav Rev, 2016, 71:578-589.
[4] NUGENT A C, ROBINSON S E, COPPOLA R, et al. Group differences in MEG-ICA derived resting state networks:application to major depressive disorder[J]. Neuroimage, 2015, 118:1-12.
[5] 茂旭,杨剑,杨阳. 基于独立成分分析功能连接的抑郁症分类研究[J].计算机应用研究,2018,35(6):1641-1644,1699.
[6] CHEN S, HUANG L, QIU H, et al. Parallel group independent component analysis for massive fMRI data sets[J]. PLoS One, 2017, 12(3):e0173496.
[7] 杨金成,张南. 独立成分分析技术综述[J]. 舰船科学技术,2007(2):83-86.
[8] 武振华. 独立成分分析及其在脑高级功能研究中的应用[D]. 大连:大连理工大学,2004.
[9] 徐东紫. 独立成分分析在脑功能网络中的应用[J/OL]. 临床医药文献电子杂志,2017,4(34):6724-6725,6727.
[10] 武杰,周春宇,杨叶,等. 基于组独立成分分析方法的情绪刺激对脑部激活区域的研究[J]. 生物医学工程学进展,2018,39(3):125-129.
[11] DU Y, FRYER S L, LIN D, et al. Identifying functional network changing patterns in individuals at clinical high-risk for psychosis and patients with early illness schizophrenia:a group ICA study[J]. Neuroimage Clin, 2017, 17:335-346.
[12] 杜宇慧,桂志国,刘迎军,等. 基于独立成分分析的脑功能网络分析方法综述[J]. 生物物理学报,2013,29(4):266-275.
[13] GROVES A R, BECKMANN C F, SMITH S M, et al. Linked independent component analysis for multimodal data fusion[J]. Neuroimage, 2011, 54(3):2198-2217.
[14] QI S, SUI J, CHEN J, et al. Parallel group ICA+ICA:joint estimation of linked functional network variability and structural covariation with application to schizophrenia[J]. Hum Brain Mapp, 2019, 40(13):3795-3809.
[15] LI Y, YAO Z, YU Y, et al. Brain network alterations in individuals with and without mild cognitive impairment:parallel independent component analysis of AV1451 and AV45 positron emission tomography[J]. BMC Psychiatry, 2019, 19(1):165.
[16] DAMARAJU E, ALLEN E A, BELGER A, et al. Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia[J]. Neuroimage Clin, 2014, 5:298-308.
[17] MANOLIU A, MENG C, BRANDL F, et al. Insular dysfunction within the salience network is associated with severity of symptoms and aberrant inter-network connectivity in major depressive disorder[J]. Front Hum Neurosci, 2014, 7:930.
[18] GAO Y, WANG M, YU R, et al. Abnormal default mode network homogeneity in treatment-naive patients with first-episode depression[J]. Front Psychiatry, 2018, 9:697.
[19] UDDIN L Q, KELLY A M, BISWAL B B, et al. Network homogeneity reveals decreased integrity of defaultmode network in ADHD[J]. J Neurosci Methods, 2008, 169:249-254.
[20] EYRE H A, YANG H, LEAVER A M, et al. Altered resting-state functional connectivity in late-life depression:a cross-sectional study[J]. J Affect Disord, 2016, 189:126-133.
[21] ZHANG Y, LI M, WANG Q, et al. A joint study of whole exome sequencing and structural MRI analysis in major depressive disorder[J]. Psychol Med, 2020,50(3):384-395.
[22] MCKENNA A, HANNA M, BANKS E, et al. The genome analysis toolkit:a MapReduce framework for analyzing next-generation DNA sequencing data[J]. Genome Res, 2010, 20(9):1297-1303.
[23] HE H, YU Q, DU Y, et al. Resting-state functional network connectivity in prefrontal regions differs between unmedicated patients with bipolar and major depressive disorders[J]. J Affect Disord, 2016, 190:483-493.
[24] YU Q, SUI J, RACHAKONDA S, et al. Altered topological properties of functional network connectivity in schizophrenia during resting state:a small-world brain network study[J]. PLoS One, 2011, 6(9):e25423.
[25] GUO W, LIU F, ZHANG J, et al. Abnormal default-mode network homogeneity in first-episode, drug-naive major depressive disorder[J]. PLoS One, 2014, 9(3):e91102.
[26] LIN W, WU H, LIU Y, et al. A CCA and ICA-based mixture model for identifying major depression disorder[J]. IEEE Trans Med Imaging, 2017, 36(3):745-756.
[27] 刘宁,杨剑. 生成式对抗网络在抑郁症分类中的应用[J]. 计算机应用与软件,2018,35(6):163-168,233.
[28] BIAN Y, WANG J, JUN J J, et al. Deep convolutional generative adversarial network(dcGAN) models for screening and design of small molecules targeting cannabinoid receptors[J]. Mol Pharm, 2019, 16(11):4451-4460.
[29] NUGENT A C, ROBINSON S E, COPPOLA R, et al. Preliminary differences in resting state MEG functional connectivity pre-and post-ketamine in major depressive disorder[J]. Psychiatry Res Neuroimaging, 2016, 254:56-66.
[30] LEAVER A M, ESPINOZA R, PIRNIA T, et al. Modulation of intrinsic brain activity by electroconvulsive therapy in major depression[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2016, 1(1):77-86.
[31] 刘天宸. 首发轻中度抑郁症患者认知行为治疗前后脑网络调节模式研究[D]. 南京:南京师范大学,2018.
[32] MO Z, WANG Q, TIAN S, et al. Evaluating treatment via flexibility of dynamic MRI community structures in depression[J]. J Southeast Univ, 2017, 33(3):273-276.
[33] GE R, BLUMBERGER D M, DOWNAR J, et al. Abnormal functional connectivity within resting-state networks is related to rTMS-based therapy effects of treatment resistant depression:a pilot study[J]. J Affect Disord, 2017, 218:75-81.
[34] KAISER R H, ANDREWS-HANNA J R, WAGER T D, et al. Large-scale network dysfunction in major depressive disorder:a meta-analysis of resting-state functional connectivity[J]. JAMA Psychiatry, 2015, 72(6):603-611.
[35] NEUFELD N H, MULSANT B H, DICKIE E W, et al. Resting state functional connectivity in patients with remitted psychotic depression:a multi-centre STOP-PD study[J]. EBioMedicine, 2018, 36:446-453.

服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
提示:您还未登录,请登录!点此登录
您是第 464616 位访问者


copyright ©《东南大学学报(医学版)》编辑部
联系电话:025-83272481 83272483
电子邮件:
bjb@pub.seu.edu.cn

本系统由北京博渊星辰网络科技有限公司设计开发 技术支持电话:010-63361626

苏ICP备09058364