[1] SAW P E,PARK J,JON S,et al.A drug-delivery strategy for overcoming drug resistance in breast cancer through targeting of oncofetal fibronectin[J].Nanomedicine,2016,13(2):713-722.
[2] SINGH A,DILNAWAZ F,MEWAR S,et al.Composite polymeric magnetic nanoparticles for co-delivery of hydrophobic and hydrophilic anticancer drugs and MRI imaging for cancer therapy[J].Acs Applied Materials & Interfaces,2014,6(6):4595.
[3] CONNIOT J,SILVA J M,FERNANDES J G,et al.Cancer immunotherapy:nanodelivery approaches for immune cell targeting and tracking[J].Front Chem,2014,2(2):1.
[4] ABSAR S,NAHAR K,CHOI S,et al.Serum albumin-protamine conjugate for biocompatible platform for targeted delivery of therapeutic macromolecules[J].J Biomed Mater Res A,2014,102(8):2481.
[5] CHEN Q,WANG C,ZHAN Z,et al.Near-infrared dye bound albumin with separated imaging and therapy wavelength channels for imaging-guided photothermal therapy.[J].Biomaterials,2014,35(28):8206-8214.
[6] 王树斌,袁飞,彭志平,等.EGF偶联牛血清白蛋白纳米载体的构建[J].重庆医科大学学报,2008,33(6):645-648.
[7] MEI L,HUANG J,ZHANG D,et al.Hepatoma-targeted radionuclide immune albumin nanospheres:131I-anti AFPMcAb-GCV-BSA-NPs[J].Anal Cell Pathol,2016,2016(6):1-8.
[8] TIAN L,CHEN Q,YI X,et al.Radionuclide I-131 labeled albumin-paclitaxel nanoparticles for synergistic combined chemo-radioisotope therapy of cancer[J].Theranostics,2017,7(3):614.
[9] LI W,JI Y H,LI C X,et al.Evaluation of therapeutic effectiveness of 131I-anti EGFR-BSA-PCL in a mouse model of colorectal cancer[J].World J Gastroenterol,2016,22(14):3758-3768.
[10] KONO K,OZAWA T,YOSHIDA T,et al.Highly temperature-sensitive liposomes based on a thermosensitive block copolymer for tumor-specific chemotherapy[J].Biomaterials,2010,31(27):7096-7105.
[11] 姜殿君,王俊平.抗癌药物脂质体及其研究进展[J].中国现代医药杂志,2007,9(4):152-154.
[12] HARRINGTON K J,ROWLINSON-BUSZA G,USTER P S,et al.Pegylated liposome-encapsulated doxorubicin and cisplatin in the treatment of head and neck xenograft tumours[J].Cancer Chemother Pharmacol,2000,46(1):10-18.
[13] SOUNDARARAJAN A,BAO A,PHILLIPS W T,et al.186Re-liposomal doxorubicin (Doxil):in vitro stability,pharmacokinetics,imaging and biodistribution in a head and neck squamous cell carcinoma xenograft model[J].Nucl Med Biol,2009,36(5):515.
[14] VIDEIRA M A,GANO L,SANTOS C,et al.Lymphatic uptake of lipid nanoparticles following endotracheal administration[J].J Microencapsul,2006,23(8):855-862.
[15] WONG P,LI L,CHEA J,et al.PET imaging of 64Cu-DOTA-scFv-anti-PSMA lipid nanoparticles (LNPs):Enhanced tumor targeting over anti-PSMA scFv or untargeted LNPs[J].Nucl Med Biol,2017,47:62-68.
[16] JUN Y W,SEO J W,CHEON J.ChemInform abstract:nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences[J].Cheminform,2016,39(22):179.
[17] LIU M C,JIN S F,ZHENG M,et al.Daunomycin-loaded superparamagnetic iron oxide nanoparticles:Preparation,magnetic targeting,cell cytotoxicity,and protein delivery research[J].J Biomater Appl,2016,31(2):261.
[18] NAGESH P K,JOHNSON N R,BOYA V K,et al.PSMA targeted docetaxel-loaded superparamagnetic iron oxide nanoparticles for prostate cancer[J].Colloids Surf B Biointerfaces,2016,144:8-20.
[19] XIE J,ZHANG Y,YAN C,et al.High-performance PEGylated Mn-Zn ferrite nanocrystals as a passive-targeted agent for magnetically induced cancer theranostics[J].Biomaterials,2014,35(33):9126-9136.
[20] SHARMA R,XU Y,KIM S W,et al.Carbon-11 radiolabeling of iron-oxide nanoparticles for dual-modality PET/MR imaging[J].Nanoscale,2013,5(16):7476-7483.
[21] GLAUS C,ROSSIN R,WELCH M J,et al.In vivo evaluation of 64Cu-labeled magnetic nanoparticles as a dual-modality PET/MR imaging agent[J].Bioconjug Chem,2010,21(4):715.
[22] NAHRENDORF M,WILSON B.Hybrid PET-optical imaging using targeted probes[J].Proc Natl Acad Sci U S A,2010,107(17):7910.
[23] ZOLATA H,AFARIDEH H,DAVANI F A.Triple therapy of HER2+ cancer using radiolabeled multifunctional iron oxide nanoparticles and alternating magnetic field[J].Cancer Biother Radiopharm,2016,31(9):324-329.
[24] AHMED M,JIANG X,DENG Z,et al.Cationic glyco-functionalized single-walled carbon nanotubes as efficient gene delivery vehicles[J].Bioconjug Chem,2016,20(20):2017-2022.
[25] TAN A,YILDIRIMER L,RAJADAS J,et al.Quantum dots and carbon nanotubes in oncology:a review on emerging theranostic applications in nanomedicine.[J].Nanomedicine,2017,6(6):1101-1114.
[26] WANG C,BAI Y,LI H,et al.Surface modification-mediated biodistribution of 13C-fullerene C60 in vivo[J].Part Fibre Toxicol,2015,13(1):14.
[27] RAVI S,DAVIDE P,LARA L,et al.Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers[J].Proc Natl Acad Sci U S A,2006,103(9):3357.
[28] RUGGIERO A,VILLA C H,HOLLAND J P,et al.Imaging and treating tumor vasculature with targeted radiolabeled carbon nanotubes[J].Int J Nanomedicine,2010,5(1):783-802.
[29] SANG B L,SU B A,LEE S W,et al.Radionuclide-embedded gold nanoparticles for enhanced dendritic cell-based cancer immunotherapy,sensitive and quantitative tracking of dendritic cells with PET and cerenkov luminescence[J].NPG Asia Materials,2016,8(6):e281.
[30] JEON Y H,KIM Y H,CHOI K,et al.In vivo,imaging of sentinel nodes using fluorescent silica nanoparticles in living mice[J].Mol Imaging Biol,2010,12(2):155-162.
[31] JAUREGUI-OSORO M,WILLIAMSON P A,GLARIA A,et al.Biocompatible inorganic nanoparticles for[18F]-fluoride binding with applications in PET imaging[J].Dalton Trans,2011,40(23):6226-6237. |