>
网站首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们
最新消息:
大鼠尾椎与腰椎髓核组织及细胞的分离培养以及髓核表型的对比研究
作者:康新桂1  吴小涛2  王锋1  时睿1  蔡峰1  朱厚毅1 
单位:1. 东南大学 医学院, 江苏 南京 210009;
2. 东南大学附属中大医院 脊柱外科中心, 江苏 南京 210009
关键词:椎间盘 髓核 表型 尾椎 腰椎 大鼠 
分类号:Q813.1;R-33;R681.5
出版年·卷·期(页码):2016·35·第三期(293-301)
摘要:

目的:对大鼠尾椎与腰椎髓核组织及细胞进行体外分离、培养与观察,并对髓核软骨样细胞表型进行对比研究。方法:分别取12周龄Sprague-Dawley(SD)大鼠腰椎与尾椎椎间盘,用分析天平称取髓核组织的质量。组织贴壁法分离培养髓核细胞;倒置相差显微镜观察HE染色的髓核组织及不同代次细胞形态变化;流式细胞术检测细胞凋亡率;实时荧光定量PCR检测第2代尾椎与腰椎髓核细胞髓核表型的差异。结果:腰椎髓核组织总质量及单个节段的质量均显著低于尾椎(P<0.05)。成功分离培养腰椎与尾椎髓核细胞。腰椎原代髓核细胞贴壁时间及70%融合时间显著高于尾椎原代髓核细胞(P<0.05);第2代腰椎髓核细胞中脊索样细胞数量显著低于尾椎髓核细胞(P<0.05)。HE染色示尾椎髓核组织中脊索样细胞较多,细胞外基质丰富,髓核样软骨细胞数目较少。第2代腰椎与尾椎髓核细胞凋亡率差异无统计学意义。实时PCR示第2代尾椎髓核细胞与腰椎髓核细胞相比,前者显著下调低氧诱导因子(Hif)2α、aggrecan、Brachyury(T)、细胞角蛋白(Krt)8、Krt18及Krt19的表达(P<0.05),且Brachyury(T)、Krt8、Krt18及Krt19的下调量更明显;显著上调碳酸酐酶(Car)3、Car12的表达(P<0.05)。结论:与腰椎髓核组织相比,尾椎髓核组织中的脊索样细胞数目更多,细胞活性更佳,组织量大,易取材,更适合作为椎间盘退变研究的种子细胞。体外单层培养的腰椎与尾椎髓核细胞表型存在差异。

Objective:To isolate, culture and observe nucleus pulposus tissues and cells from the lumbar and caudal intervertebral disc of rat, and to compare the nucleus pulposus phenotypic markers. Methods:The whole spine was separated from 12-week-old Sprague Dawley rats under the sterile condition. The weights of lumbar and caudal nucleus pulposus tissues were measured by analytical balance. Lumbar and caudal nucleus pulposus cells were cultured by adherent cultivation approach. Lumbar and caudal nucleus pulposus tissues morphology and cellular morphologic changes were noted by HE staining and continuous observation under inverted phase contrast approach, respectively. Lumbar and caudal nucleus pulposus cells apoptosis rates were analyzed with flow cytometry. Messenger RNA expression levels of nucleus pulposus phenotypic markers of lumbar and caudal nucleus pulposus cells at P2 were determined by real-time polymerase chain reaction array analysis. Results:The total and single weights of lumbar nucleus pulposus tissues were significantly lower than those of caudal nucleus pulposus tissues(P<0.05). Lumbar and caudal nucleus pulposus cells were isolated and cultured successfully. The adherence time of the primary cells(the cell fusion reached 70%) in lumbar group was significantly longer than that in caudal group in prithany generation(P<0.05). The numbers of notochordal cells in lumbar group were significantly lower than those in caudal group at P2(P<0.05). HE staining showed that the numbers of notochordal cells, the extracellular matrix in caudal group were abandant than those in lumbar group, however, the numbers of nucleus pulposus cartilage cells were lower than those in lumbar group. The cell apoptosis rates had no significant differences between lumbar and caudal nucleus pulposus cells at P2(P>0.05). Messenger RNA expression levels of nucleus pulposus phenotypic markers in caudal group were significant lower expression of Hif2α, aggrecan, Brachyury(T), Cytokeratin8, 18, 19(P<0.05), and lower expression of Brachyury(T), Cytokeratin8, 18, and 19 was more steeper, and significant higher expression of Carbonic anhydrase3, 12. Conclusion:Compared with the lumbar nucleus pulposus, caudal nucleus pulposus has more notochordal cells, a better cellular status, more tissue, easier assessible, which is more suitable for experiment as a seed cell. Messenger RNA expression levels of nucleus pulposus phenotypic markers have a difference between lumbar and caudal nucleus pulposus cells cultured in monolayer in vitro.

参考文献:

[1] RISBUD M V,SCHAER T P,SHAPIRO I M.Toward an understanding of the role of notochordal cells in the adult intervertebral disc:from discord to accord[J].Dev Dyn,2010,239(8):2141-2148.
[2] RODRIGUES-PINTO R,RICHARDSON S M,HOYLAND J A.An understanding of intervertebral disc development,maturation and cell phenotype provides clues to direct cell-based tissue regeneration therapies for disc degeneration[J].Eur Spine J,2014,23(9):1803-1814.
[3] CHAN S C,GANTENBEIN-RITTER B.Intervertebral disc regeneration or repair with biomaterials and stem cell therapy-feasible or fiction?[J].Swiss Med Wkly,2012,142:w13598.
[4] KIM J H,PARK J H,MOON H J,et al.Matrix degradative enzymes and their inhibitors during annular inflammation:initial step of symptomatic intervertebral disc degeneration[J].J Korean Neurosurg Soc,2014,55(5):237-243.
[5] SAKAI D,MOCHIDA J,YAMAMOTO Y,et al.Transplantation of mesenchymal stem cells embedded in Atelocollagen gel to the intervertebral disc:a potential therapeutic model for disc degeneration[J].Biomaterials,2003,24(20):3531-3541.
[6] LIU Y,FU S,RAHAMAN M N,et al.Native nucleus pulposus tissue matrix promotes notochordal differentiation of human induced pluripotent stem cells with potential for treating intervertebral disc degeneration[J].J Biomed Mater Res A,2015,103(3):1053-1059.
[7] TURNER S,BALAIN B,CATERSON B,et al.Viability,growth kinetics and stem cell markers of single and clustered cells in human intervertebral discs:implications for regenerative therapies[J].Eur Spine J,2014,23(11):2462-2472.
[8] POTIER E,de VRIES S,van DOESELAAR M,et al.Potential application of notochordal cells for intervertebral disc regeneration:an in vitro assessment[J].Eur Cell Mater,2014,28:68-81.
[9] WANG S,RUI Y,LU J,et al.Cell and molecular biology of intervertebral disc degeneration:current understanding and implications for potential therapeutic strategies[J].Cell Prolif,2014,47(5):381-390.
[10] KAKEHASHI A,INOUE M,WEI M,et al.Cytokeratin 8/18 overexpression and complex formation as an indicator of GST-P positive foci transformation into hepatocellular carcinomas[J].Toxicol Appl Pharmacol,2009,238(1):71-79.
[11] GUEHRING T,WILDE G,SUMNER M,et al.Notochordal intervertebral disc cells:sensitivity to nutrient deprivation[J].Arthritis Rheum,2009,60(4):1026-1034.
[12] RISBUD M V,SHAPIRO I M.Notochordal cells in the adult intervertebral disc:new perspective on an old question[J].Crit Rev Eukaryot Gene Expr,2011,21(1):29-41.
[13] SPILLEKOM S,SMOLDERS L A,GRINWIS G C,et al.Increased osmolarity and cell clustering preserve canine notochordal cell phenotype in culture[J].Tissue Eng Part C Methods,2014,20(8):652-662.
[14] HIRATA H,YURUBE T,KAKUTANI K,et al.A rat tail temporary static compression model reproduces different stages of intervertebral disc degeneration with decreased notochordal cell phenotype[J].J Orthop Res,2014,32(3):455-463.
[15] MEHRKENS A,KARIM M Z,KIM S,et al.Canine notochordal cell-secreted factors protect murine and human nucleus pulposus cells from apoptosis by inhibition of activated caspase-9 and caspase-3/7[J].Evid Based Spine Care J,2013,4(2):154-156.
[16] 韩俊亮,段王平,史光华,等.软骨细胞周基质对软骨细胞作用的研究进展[J].中国骨伤,2015,28(6):576-579.
[17] PURMESSUR D,GUTERL C C,CHO S K,et al.Dynamic pressurization induces transition of notochordal cells to a mature phenotype while retaining production of important patterning ligands from development[J].Arthritis Res Ther,2013,15(5):R122.
[18] HIYAMA A,MOCHIDA J,IWASHINA T,et al.Transplantation of mesenchymal stem cells in a canine disc degeneration model[J].J Orthop Res,2008,26(5):589-600.
[19] YURUBE T,HIRATA H,KAKUTANI K,et al.Notochordal cell disappearance and modes of apoptotic cell death in a rat tail static compression-induced disc degeneration model[J].Arthritis Res Ther,2014,16(1):R31.
[20] POTIER E,ITO K.Can notochordal cells promote bone marrow stromal cell potential for nucleus pulposus enrichment? A simplified in vitro system[J].Tissue Eng Part A,2014,20(23-24):3241-3251.
[21] LIU Y X,FU S S,RAHAMAN M N,et al.Native nucleus pulposus tissue matrix promotes notochordal differentiation of human induced pluripotent stem cells with potential for treating intervertebral disc degeneration[J].J Biomed Mater Res A,2015,103(3):1053-1059.
[22] AGRAWAL A,GAJGHATE S,SMITH H,et al.Cited2 modulates hypoxia-Inducible factor-dependent expression of vascular endothelial growth factor in nucleus pulposus cells of the rat intervertebral disc[J].Arthritis Rheum,2008,58(12):3798-3808.
[23] Le Maitre C L,POCKERT A,BUTTLET D J,et al.Matrix synthesis and degradation in human intervertebral disc degeneration[J].Biochem Soc Trans,2007,35(Pt 4):652-655.
[24] 常献,周跃,李长青.人软骨终板干细胞与退变髓核细胞体外非接触共培养的实验研究[J].中国脊柱脊髓杂志,2015,25(1):54-61.
[25] MINOGUE B M,RICHARDSON S M,ZEEF L A,et al.Transcriptional profiling of bovine intervertebral disc cells:implications for identification of normal and degenerate human intervertebral disc cell phenotypes[J].Arthritis Res Ther,2010,12(1):R22.
[26] RISBUD M V,SCHOEPFLIN Z R,MWALE F,et al.Defining the phenotype of young healthy nucleus pulposus cells:recommendations of the Spine Research Interest Group at the 2014 Annual ORS Meeting[J].J Orthop Res,2015,33(3):283-293.
[27] BARTELS E M,FAIRBANK J C,WINLOVE C P,et al.Oxygen and lactate concentrations measured in vivo in the intervertebral discs of patients with scoliosis and back pain[J].Spine(Phila Pa 1976),1998,23(1):1-7.
[28] KLUBA T,NIEMEYER T,GAISSMAIER C,et al.Human anulus fibrosis and nucleus pulposus cells of the intervertebral disc:effect of degeneration and culture system on cell phenotype[J].Spine,2005,30(24):2743-2748.
[29] 朱厚毅,王运涛,王锋,等.大鼠不同节段椎间盘髓核细胞分离鉴定及生物特性的对比研究[J].中国修复重建外科杂志,2015,29(10):1295-1300.
[30] 赵丹慧,吴成爱,王娜,等.实验动物椎间盘特征在选择椎间盘退变模型中的意义[J].中国脊柱脊髓杂志,2012,22(9):854-856.
[31] PARK E Y,PARK J B.High glucose-induced oxidative stress promotes autophagy through mitochondrial damage in rat notochordal cells[J].Int Orthop,2013,37(12):2507-2514.
[32] 毛波,刘少喻,李德平,等.基于晚期糖基化终末产物与腰椎间盘突出症临床发病之间关系的多因素Logistic分析[J].现代医学,2013,41(6):375-379.
[33] GUEHRING T,WILDE G,SUMMER M,et al.Notochordal intervertebral disc cells sensitivity to nutrient deprivation[J].Arthritis Rheum,2009,60(4):1026-1034.
[34] HIYAMA A,MOCHIDA J,IWASHINA T,et al.Transplantation of mesenchymal stem cells in a canine disc degeneration model[J].J Orthop Res,2008,26(5):589-600.

服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
提示:您还未登录,请登录!点此登录
您是第 412844 位访问者


copyright ©《东南大学学报(医学版)》编辑部
联系电话:025-83272481 83272483
电子邮件:
bjb@pub.seu.edu.cn

苏ICP备09058364