>
网站首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们
最新消息:
MEG和EEG在癫痫治疗中的作用
作者:郭晓远1 杨天明2 
单位:1.东南大学,临床医学院,江苏,南京,210009; 2.东南大学附属中大医院,神经外科,江苏,南京,210009
关键词:癫痫 脑电描记术 脑磁图描记术 综述[文献类型] 
分类号:R742.1, R741.044
出版年·卷·期(页码):2005·24·第四期(280-283)
摘要:

脑电图(EEG)只能选择性地探测切线位的电源,而脑磁图(MEG)可以同时测量切线和径向的电活动,两者均可独立提供其他神经影像学方法所无法提供的神经生理学数据.当执行多导联的任务时,MEG检查时间远少于EEG所需,且精确性更佳,而EEG的优势在于长程视频监测.因此,MEG和EEG在癫痫检查中可互为补充,两者分析结果与侵入性电极获得的结果相比无明显差异.头皮EEG可提供丰富的信息,但考虑外形非规则和内容物导电率的不均一性,构建EEG头颅模型变得十分困难.因此在同样使用标准半球模型情况下,MEG信号偶极子定位方法要比EEG偶极子定位方法优越.然而,如果使用拟和度好的头颅模型并加强EEG信号的分析,EEG定位的精确性和MEG相比较并无明显区别.目前,研究的重点是联合使用全脑MEG和多导联EEG,并发展更佳的源模型技术.

Both electroencephalogram (EEG) and magnetoencephalogram (MEG) provide unique neurophysiologic data not obtainable by other neuroimaging techniques.MEG has now emerged as a mature clinical technology. While both EEG and MEG can be performed with more than 100 channels, MEG recordings with 100 to 300 channels are more easily done because of the time needed to apply a large number of EEG electrodes. EEG has the advantage of the long-term video EEG recordings. MEG and EEG seem to complement each other for the detection of interictal epileptiform discharges. MEG selectively detects tangential sources. EEG measures both radial and tangential activity, although the radial components dominate the EEG signals at the scalp. Thus, while EEG provides more comprehensive information, it is more complicated to model due to considerable influences of the shape and conductivity of the volume conductor. Dipole localization techniques favor MEG due to the higher accuracy of MEG source localization compared to EEG when using the standard spherical head shape model. However, if special care is taken to address the above issues and enhance the EEG, the localization accuracy of EEG and MEG actually are comparable. The combined use of whole-head MEG systems and multichannel EEG in conjunction with advanced source modeling techniques is an area of active development and will allow a better noninvasive characterization of the irritative zone in presurgical epilepsy evaluation.

参考文献:

[1] ALLEN P J, FISH D R, SMITH S J. Very high-frequency rhythmic activity during SEEG suppression in frontal lobe epilepsy. 1992. doi:10.1016/0013-4694(92)90160-J
[2] BARTH D S, SUTHERLING W W, BEATTY J. Intracellular currents of interictal penicillin spikes: evidence from neuromagnetic mapping. 1986. doi:10.1016/0006-8993(86)91040-1
[3] Williamson S J, ROBINSON S E, KA~ L. Methods and instrumentation for biomagnetism, 1988
[4] Braizer M. A study of the electrical fields at the sur-face of the head EEG, 1949
[5] Hummel C, GENOW A, SCHELER G. Differences between source localizations from MEG and EEG, 2002
[6] EBERSOLE J S. EEG and MEG dipole source modeling, 1997
[7] HAMALAINEN M S, SARVAS J I. Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data. 1989(2). doi:10.1109/10.16463
[8] Moran J E, TEPLEY N. Two dimensional inverse imaging (2D Ⅱ ) of current sources in magnetoencephalography. 2000(3). doi:10.1023/A:1023441924015
[9] GHARIB S, SUTHERLING W W, NAKASATO N. MEG and ECoG localization accuracy test. 1995. doi:10.1016/0013-4694(94)00276-Q
[10] LEAHY R M, MOSHER J C, SPENCER M E. A study of dipole localization accuracy for MEG and EEG using a human kull phantom. 1998. doi:10.1016/S0013-4694(98)00057-1
[11] GHARIB S, SUTHERLING WW, NAKASATO N. MEG and ECoG localization accuracy test. 1995. doi:10.1016/0013-4694(94)00276-Q
[12] Dale A M, BELLIVEAU J W. Monte Carlo simulation studies of EEG and MEG localization accuracy. 2002
[13] Fuchs M, KASTNER J, WAGNER M. A standardized boundary element method volume conductor model. 2002
[14] HERRENDORF G, STEINHOFF B J, KOLLE R. Dipolesource analysis in a realistic head model in patients with focal epilepsy. 2000(1). doi:10.1111/j.1528-1157.2000.tb01508.x
[15] EBERSOLE J S. Classification of MEG spikes in temporal lobe epilepsy, 1999
[16] EBERSOLE J S. Noninvasive localization of epileptogenic foci by EEG source modeling. 2000(ZK). doi:10.1111/j.1528-1157.2000.tb01531.x
[17] BARTH D S, BAUMGARTNER C, SUTHERLING W W. Neuromagnetic field modeling of multiple brain regions producing interictal spikes in human epilepsy. 1989. doi:10.1016/0013-4694(89)90088-6
[18] EBERSOLE J S, SMITH J R. MEG spike modeling differentiates baso-mesial from lateral cortical temporal lobe epilepsy. 1995. doi:10.1016/0013-4694(95)97931-P
[19] Van NESS P C. Surgical outcome for neocortical (extrahippocampal) focal epilepsy, 1992
[20] Iwasaki M, PESTANA E, BURGESS R C. Comparative analysis of MEG and scalp EEG for interictal spike deteotion, 2002
[21] Paetau R, KAJOLA M, KARHU J. Magnetoencephalographic localization of epileptic cortex -impact on surgical treatment. 1992. doi:10.1002/ana.410320119
[22] Merlet I, GOTMAN J. Reliability of dipole models of epileptic spikes. 1999
[23] Ochi A, OTSUBO H, SHARMA R. Comparison of electroencephalographic dipoles of interictal spikes from prolonged scalp video-electroencephalography and magnetoencephalographic dipoles from shortterm recording in children with extratemporal lobe epilepsy. 2001. doi:10.1177/088307380101600907
[24] Yoshinaga H, NAKAHORI T, OHTSUKA Y. Benefit of simultaneous recording of EEG and MEG in dipole localization. 2002(8). doi:10.1046/j.1528-1157.2002.42901.x
[25] ELIASHIV D S, ELSAS S M, SQUIRES K. Ictal magnetic source imaging as a localizing tool in partial epilepsy. 2002 

服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
提示:您还未登录,请登录!点此登录
您是第 413799 位访问者


copyright ©《东南大学学报(医学版)》编辑部
联系电话:025-83272481 83272483
电子邮件:
bjb@pub.seu.edu.cn

苏ICP备09058364