>
网站首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们
最新消息:
雷诺定受体与心律失常
作者:吴晓冬1 戴德哉2 
单位:1.东南大学基础医学院,生理学与药理学系,江苏,南京,210009; 2.中国药科大学,心血管药理研究室,江苏,南京,210009
关键词:兰尼碱受体钙释放通道/生理学 心律失常 心肌病 肥大性 综述文献 
分类号:R9
出版年·卷·期(页码):2005·24·第一期(55-59)
摘要:

雷诺定受体是心肌细胞内的钙释放通道,对心肌细胞内游离钙离子浓度有重要影响.在心脏缺血或肥大等病理过程中雷诺定受体的功能和数量也会发生明显变化,通常是数量减少但敏感性增加.交感神经过度兴奋会引起雷诺定受体过度磷酸化, 使其敏感性异常增高.肌浆网(SR)内Ca2+超载可引起SR在舒张期异常释放钙离子增加,导致钠钙交换及其内向电流加强,后者与钙震荡电流、早后除极、迟后除极、甚至尖端扭转型心律失常的产生有关,是导致心律失常的重要原因之一.

Ryanodine receptor is the main intracellular Ca channel residing in the sarcoplasmic reticulum (SR) and is responsible for the release of Ca  2+ from the SR. The impaired ability to handle intracellular calcium due to changes in ryanodine receptor may be an important proarrhythmia mechanism in hypertrophied ventricle. Over-activity of sympathetic nervous system or overload of [Ca  2+]    SR will increase the sensitivity of RyR to [Ca  2+]  i causing spontaneous Ca  2+ release, which is related to the occurrence of delayed or early afterdepolarizations and dispersion of repolarization in ventricular myocardium, and thus, may contribute to triggered activity and other ventricular arrhythmias.

参考文献:

[1] WOLK R. Arrhythmogenic mechanisms in left ventricular hypertrophy. 2000(3). doi:10.1053/eupc.2000.0110
[2] WEHREN X H, LEHNART S E, HUANG F. FKBP12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise-induced sudden cardiac death. 2003(7). doi:10.1016/S0092-8674(3)00434-3
[3] FRANZINI-ARMSTRONG C, PROTASI F, RAMESH V. Shape,size,and distribution of Ca2+ release units and couplons in skeletal and cardiac muscles. 1999. doi:10.1016/S0006-3495(99)77000-1
[4] FRUEN B R, BARDY J M, BYREM T M. Differential Ca2+ sensitivity of skeletal and cardiac muscle ryanodine receptors in the presence of calmodulin, 2000
[5] WEHRENS X H T, LEHNART S E, REIKEN S R. Protection from cardiac arrhythmia through ryanodine receptor-stabilizing protein calstabin 2. 2004(5668). doi:10.1126/science.1094301
[6] MARX S O, REIKEN S, HISAMATSU Y. Phosphorylation-dependent regulation of ryanodine receptors:a novel role for leucine/isoleucine zippers. 2001(4). doi:10.1083/jcb.153.4.699
[7] MEYERS M B, PURI T S, CHIEN A J. Sorcin associates with the pore-forming subunit of voltage-dependent L-type Ca2+ channels. 1998(30). doi:10.1074/jbc.273.30.18930
[8] ZHANG L, KELLEY J, SCHMEISSER G. Complex formation between junctin,triadin,calsequestrin,and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane. 1997. doi:10.1074/jbc.272.37.23389
[9] KAPILOFF M S, JACKSON N, AIRHART N. mAKAP and the ryanodine receptor are part of a multi-component signaling complex on the cardiomyocyte nuclear envelope, 2001
[10] UEHARA A, YASUKOCHI M, MEJIA-ALVAREZ R. Gating kinetics and ligand sensitivity modified by phosphorylation of cardiac ryanodine receptors, 2002(1)
[11] TANAKA H, NISHIMARU K, SEKINE T. Two-dimensional millisecond analysis of intracellular Ca2+ sparks in cardiac myocytes by rapid scanning confocal microscopy:increase in amplitude by isoproterenol. 1997(2). doi:10.1006/bbrc.1997.6470
[12] SHANNON T R, GINSBURG K S, BERS M D. Potentiation of fractional SR Ca release by total and free intra-SR Ca concentration. 2000(1). doi:10.1016/S0006-3495(0)76596-9
[13] LUKYANEKO V, GYORKE I, GYORKE S. Regulation of calcium release by calcium inside the sarcoplasmic reticulum in ventricular myocytes, 1996
[14] POGWIZD S M, SCHLOTTHAUER K, LI L. Arrhythmogenesis and contractile dysfunction in heart failure:roles of sodium-calcium exchange,inward rectifier potassium current,and residual beta-adrenergic responsiveness. 2001. doi:10.1161/hh1101.091193
[15] SCHLOTTHAUER K, BERS D M. Sarcoplasmic reticulum Ca2+ release causes myocyte depolarization. Underlying mechanism and threshold for triggered action potentials, 2000
[16] FOZZARD H A. Afterdepolarizations and triggered activity, 1992(z2)
[17] KASS R S, LEDERER W J, TSIEN R W. Role of calcium ions in transient inward currents and aftercontractions induced by strophanthidin in cardiac Purkinje fibers, 1978
[18] FEDIDA D, NOBLE D, RANKIN A C. The arrhythmogenic transient inward current Iti and related contractions in isolated guinea-pig myocytes, 1987
[19] VOLDERS P G, KULCSAR A, VOS M A. Similarities between early and delayed afterdepolarizations induced by isoproterenol in canine ventricular myocytes. 1997. doi:10.1016/S0008-6363(96)00270-2
[20] TWEEDIE D, HARDING S E, MACLEOD K T. Sarcoplasmic reticulum Ca content,sarcolemmal Ca2+ influx and the genesis of arrhythmias in isolated guinea-pig cardiomyocytes. 2000(2). doi:10.1006/jmcc.1999.1070
[21] WU Y, ANDERSON M E. Ca2+-activated non-selective cation current in rabbit ventricular myocytes. 2000(1). doi:10.1111/j.1469-7793.2000.0051m.x
[22] BURASHNIKOV A, ANTZELEVITCH C. Acceleration induced action potential prolongation and early afterdepolarizations, 1998
[23] VERDUYN S C, VOS M A, GORGELS A P. The effect of flunarizine and ryanodine on acquired torsades de pointes arrhythmias in the intact canine heart, 1995(3)
[24] SIPIDO K R, VOLDERS P G, GROOT S H. Enhanced Ca(2+) release and Na/Ca exchange activity in hypertrophied canine ventricular myocytes:potential link between contractile adaptation and arrhythmogenesis, 2000
[25] POGWIZD S M, QI M, YUAN W. Bers DMUpregulation of Na(+)/Ca(2+) exchanger expression and function in an arrhythmogenic rabbit model of heart failure, 1999
[26] MESZAROS J, KHANANSHVILI D, HART G. Mechanisms underlying delayed afterdepolarizations in hypertrophied left ventricular myocytes of rats, 2001(2)
[27] LAITINEN P J, BROWN K M, PIIPPO K. Mutations of the cardiac ryanodine receptor (RyR2) gene in familial polymorphic ventricular tachycardia, 2001
[28] LEHNART S E, WEHRENS X H T, LAITINEN P J. Sudden death in familial polymorphic ventricular tachycardia associated with calcium release channel (Ryanodine Receptor) leak. 2004(25). doi:10.1161/01.CIR.0000132472.98675.EC
[29] MARKS A R. Cardiac intracellular calcium release channels:role in heart failure. 2000(1)
[30] SATOH H. Electrophysiological actions of ryanodine on single rabbit sinoatrial nodal cells, 1997
[31] TENTHOREY D, RIBAUPIERRE Y, KUCERA P. Effects of verapamil and ryanodine on activity of the embryonic chick heart during anoxia and reoxygenation. 1998(2). doi:10.1097/00005344-199802000-00004
[32] HAYASHI H, TERADA H, KATOH H. Prevention of reoxygenation-induced arrhythmias in guinea pig papillary muscles. 1996(6). doi:10.1097/00005344-199606000-00008
[33] RAKOVIC S, CUI Y, IINO S. An antagonist of cADP-ribose inhibits arrhythmogenic oscillations of intracellular Ca2+ in heart cells. 1999(25). doi:10.1074/jbc.274.25.17820
[34] OHKUSA T, NOMA T, UEYAMA T. Differences in sarcoplasmic reticulum gene expression in myocardium from patients undergoing cardiac surgery. Quantification of steady-state levels of messenger RNA using the reverse transcription-polymerase chain reaction. 1997. doi:10.1007/BF01747496
[35] TEMSAH R M, NETTICADAN T, CHAPMAN D. Alterations in sarcoplasmic reticulum function and gene expression in ischemic-reperfused rat heart, 1999(2)
[36] REIKEN S, WEHRENS X H, VEST J A. β-blockers restore calcium release channel function and improve cardiac muscle performance in human heart failure. 2003. doi:10.1161/01.CIR.0000068316.53218.49
[37] TANAKA H, NISHIMARU K, SEKINE T. Two-dimensional millisecond analysis of intracellular Ca2+ sparks in cardiac myocytes by rapid scanning confocal microscopy:increase in amplitude by isoproterenol. 1997(2). doi:10.1006/bbrc.1997.6470
[38] ZCHUT S, FENG W, SHOSHAN-BARMATZ V. Ryanodine receptor/calcium release channel conformations as reflected in the different effects of propranolol on its ryanodine binding and channel activity, 1996
[39] DOI M, YANO M, KOBAYASHI S. Propranolol prevents the development of heart failure by restoring FKBP12.6-mediated stabilization of ryanodine receptor. 2002(11). doi:10.1161/hc1102.105270
[40] REIKEN S, WEHRENS X H, VEST J A. Beta-blockers restore calcium release channel function and improve cardiac muscle performance in human heart failure. 2003. doi:10.1161/01.CIR.0000068316.53218.49
[41] VALDIVIA H H, VALDIVIA C, CORONADO R. Direct binding of verapamil to the ryanodine receptor channel of sarcoplasmic reticulum. 1990. doi:10.1016/S0006-3495(90)82392-4
[42] CHEN D D, DAI D Z, WANG C X. Effects of verapamil and captopril on cardiac hypertrophy and elevated left ventricular sarcolemmal Na+-K+-ATPase activity induced by L-thyroxine in rats, 1995
[43] BALAMORTIZ E O, CARVAJAL K, CRUZ D. Protective effect of -dantrolene in post-ischemic reperfusion myocardial damage, 1999(4)
[44] NEGRETTI N, PEREZ M R, WALKER D. Inhibition of sarcoplasmic reticulum function by polyunsaturated fatty acids in in-tact,isolated myocytes from rat ventricular muscle, 2000 

服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
提示:您还未登录,请登录!点此登录
您是第 418695 位访问者


copyright ©《东南大学学报(医学版)》编辑部
联系电话:025-83272481 83272483
电子邮件:
bjb@pub.seu.edu.cn

苏ICP备09058364