>
网站首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们
最新消息:
TIM3与血液系统肿瘤关系的研究进展
作者:陈碧琪1  陈宝安2  程坚2 
单位:1. 东南大学 医学院, 江苏 南京 210009;
2. 东南大学附属中大医院 血液科, 江苏 南京 210009
关键词:T细胞免疫球蛋白黏蛋白分子3 血液系统肿瘤 免疫治疗 免疫检查点抑制剂 文献综述 
分类号:R733
出版年·卷·期(页码):2021·40·第四期(547-551)
摘要:

T细胞免疫球蛋白黏蛋白分子3(TIM3)是TIM家族免疫调节蛋白的成员,因与自身免疫及肿瘤免疫反应的调节相关而备受关注。TIM3在肿瘤微环境中主要通过抑制辅助性T细胞、诱导CD8+T细胞衰竭、促进骨髓来源的抑制性细胞(MDSCs)扩增等途径发挥免疫抑制作用。作者就TIM3的生物学特征、TIM3与髓系肿瘤及淋巴系统肿瘤关系、TIM3抑制剂在肿瘤治疗中作用的相关研究进展进行综述,以期为血液系统肿瘤患者带来更多的治疗方案。

参考文献:

[1] HE Y, CAO J, ZHAO C, et al. TIM-3, a promising target for cancer immunotherapy[J]. Onco Targets Ther, 2018, 11:7005-7009.
[2] FRIEDLAENDER A, ADDEO A, BANNA G.New emerging targets in cancer immunotherapy:the role of TIM3[J]. ESMO Open, 2019, 4(Suppl 3):e000497.
[3] ANDERSON A C.Tim-3:an emerging target in the cancer immunotherapy landscape[J]. Cancer Immunol Res, 2014, 2(5):393-398.
[4] KIKUSHIGE Y, MIYAMOTO T, YUDA J, et al. A TIM-3/Gal-9 autocrine stimulatory loop drives self-renewal of human myeloid leukemia stem cells and leukemic progression[J]. Cell Stem Cell, 2015, 17(3):341-352.
[5] HUANG Y H, ZHU C, KONDO Y, et al. CEACAM1 regulates TIM-3-mediated tolerance and exhaustion[J]. Nature, 2015, 517(7534):386-390.
[6] ZHANG Y, CAI P, LI L, et al. Co-expression of TIM-3 and CEACAM1 promotes T cell exhaustion in colorectal cancer patients[J]. Int Immunopharmacol, 2017, 43:210-218.
[7] CAO E, ZANG X, RAMAGOPAL U A, et al. T cell immunoglobulin mucin-3 crystal structure reveals a galectin-9-independent ligand-binding surface[J]. Immunity, 2007, 26(3):311-321.
[8] DAYOUB A S, BREKKEN R A.TIMs, TAMs, and PS-antibody targeting:implications for cancer immunotherapy[J]. Cell Commun Signal, 2020, 18(1):29.
[9] 闻莲, 何雪晴, 钱一可, 等.HMGB1在抗肿瘤免疫发生中的作用[J]. 生命的化学, 2020, 40(4):483-489.
[10] 辛燕, 张峰波, 马秀敏, 等.Tim3/HMGB1在肿瘤免疫逃逸中的机制研究进展[J]. 细胞与分子免疫学杂志, 2015, 31(10):1437-1439.
[11] CHEN X, WANG L, LI P, et al. Dual TGF-beta and PD-1 blockade synergistically enhances MAGE-A3-specific CD8(+) T cell response in esophageal squamous cell carcinoma[J]. Int J Cancer, 2018, 143(10):2561-2574.
[12] DURGEAU A, VIRK Y, CORGNAC S, et al. Recent advances in targeting CD8 T-cell immunity for more effective cancer immunotherapy[J]. Front Immunol, 2018, 9(14):1-14.
[13] TAO J, HAN D, GAO S, et al. CD8(+)T cells exhaustion induced by myeloid-derived suppressor cells in myelodysplastic syndromes patients might be through TIM3/Gal-9 pathway[J]. J Cell Mol Med, 2020, 24(1):1046-1058.
[14] 徐良静, 徐金格, 李晓莉, 等.T细胞免疫球蛋白黏液素3基因在急性白血病中的表达及其临床意义[J]. 白血病·淋巴瘤, 2016, 25(5):259-263.
[15] YEGIN Z A, CAN F, AYDIN KAYNAR L, et al. Pre-transplant sTIM-3 levels may have a predictive impact on transplant outcome in acute leukemia patients[J]. Hematology, 2020, 25(1):125-133.
[16] ZAHRAN A M, MOHAMMED S M F, SAYED M M, et al. Up-regulation of regulatory T cells, CD200 and TIM3 expression in cytogenetically normal acute myeloid leukemia[J]. Cancer Biomark, 2018, 22(3):587-595.
[17] DARWISH N H E, THANGIRALA S, KAVITHA G, et al. Acute myeloid leukemia stem cell markers in prognosis and targeted therapy:potential impact of BMI-1, TIM-3 and CLL-1[J]. Oncotarget, 2016, 7(36):57811-57820.
[18] SAUSSELE S, RICHTER J, GUILHOT J, et al. Discontinuation of tyrosine kinase inhibitor therapy in chronic myeloid leukaemia (EURO-SKI):a prespecified interim analysis of a prospective, multicentre, non-randomised, trial[J]. Lancet Oncol, 2018, 19(6):747-757.
[19] BRUCK O, BLOM S, DUFVA O, et al. Immune cell contexture in the bone marrow tumor microenvironment impacts therapy response in CML[J]. Leukemia, 2018, 32(7):1643-1656.
[20] REZAZADEH H, ASTANEH M, TEHRANI M, et al. Blockade of PD-1 and TIM-3 immune checkpoints fails to restore the function of exhausted CD8(+) T cells in early clinical stages of chronic lymphocytic leukemia[J]. Immunol Res, 2020, 68(5):269-279.
[21] AUTIO M, LEIVONEN S K, BRUCK O, et al. Immune cell constitution in the tumor microenvironment predicts the outcome in diffuse large B-cell lymphoma[J]. Haematologica, 2021, 106(3):718-729.
[22] KEANE C, TOBIN J, GUNAWARDANA J, et al. The tumour microenvironment is immuno-tolerogenic and a principal determinant of patient outcome in EBV-positive diffuse large B-cell lymphoma[J]. Eur J Haematol, 2019, 103(3):200-207.
[23] NGIOW S F, VON SCHEIDT B, AKIBA H, et al. Anti-TIM3 antibody promotes T cell IFN-gamma-mediated antitumor immunity and suppresses established tumors[J]. Cancer Res, 2011, 71(10):3540-3551.
[24] SAKUISHI K, APETOH L, SULLIVAN J M, et al. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity[J]. J Exp Med, 2010, 207(10):2187-2194.
[25] SU H, XIE H, DAI C, et al. Characterization of TIM-3 expression and its prognostic value in patients with surgically resected lung adenocarcinoma[J]. Lung Cancer, 2018, 121:18-24.
[26] KOYAMA S, AKBAY E A, LI Y Y, et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints[J]. Nat Commun, 2016, 7(10501):1-9.
[27] HARDING J J, PATNAIK A, MORENO V, et al. A phase Ⅰa/Ⅰb study of an anti-TIM-3 antibody(LY3321367) monotherapy or in combination with an anti-PD-L1 antibody(LY3300054):Interim safety, efficacy, and pharmacokinetic findings in advanced cancers[J]. J Clin Oncol, 2019, 37(8 Suppl):12.
[28] DAVAR D, BOASBERG P D, EROGLU Z, et al. Abstract O21:A phase 1 study of TSR-022, an anti-TIM-3 mono-clonal antibody, in combination with TSR-042(anti-PD-1) in patients with colorectal cancer and post-PD-1 NSCLC and melanoma[J]. J Immuno Ther Cancer, 2018, 6(Suppl 1):155.
[29] CURIGLIANO G, GELDERBLOM H, et al. Abstract CT183:Phase(Ph)Ⅰ/Ⅱ study of MBG453±spartalizumab(PDR001) in patients(pts) with advanced malignancies[J]. Cancer Res, 2019, 79(13 Suppl):CT183.
[30] BARRUETO L, CAMINERO F, CASH L, et al. Resistance to checkpoint inhibition in cancer immunotherapy[J]. Transl Oncol, 2020, 13(3):100738.
[31] 李国贤, 韩根成.靶向Tim-3药物研发进展[J]. 国际免疫学杂志, 2020(1):68-72.

服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
提示:您还未登录,请登录!点此登录
您是第 410133 位访问者


copyright ©《东南大学学报(医学版)》编辑部
联系电话:025-83272481 83272483
电子邮件:
bjb@pub.seu.edu.cn

苏ICP备09058364