>
网站首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们
最新消息:
小胶质细胞对胶质瘤细胞侵袭性影响的研究进展
作者:张雪迪  王玉珏  钱菲菲  掌雨瑶  王琪  李风 
单位:徐州医科大学, 江苏 徐州 223600
关键词:胶质瘤 小胶质细胞 微环境 治疗靶点 文献综述 
分类号:R739.41
出版年·卷·期(页码):2020·39·第二期(239-243)
摘要:

胶质瘤是中枢神经系统最常见的原发性恶性肿瘤,严重威胁人类健康。作者就胶质瘤与胶质瘤微环境、小胶质细胞及胶质瘤对小胶质细胞的招募和诱导作用、小胶质细胞内与胶质瘤侵袭相关的通路以及小胶质细胞对胶质瘤侵袭性的影响进行综述,以期为胶质瘤的治疗提供新思路。

参考文献:

[1] THAKKAR J P,DOLECEK T A,HORBINSKI C,et al. Epidemiologic and molecular prognostic review of glioblastoma[J]. Cancer Epidemiol Biomarkers Prev,2014, 23(10):1985-1996.
[2] YANG P, WANG Y, PENG X, et al. Management and survival rates in patients with glioma in China (2004-2010):a retrospective study from a single-institution[J]. J Neurooncol, 2013, 113(2):259-266.
[3] GILBERT M R, WANG M, ALDAPE K D, et al. Dose-dense temozolomide for newly diagnosed glioblastoma:a randomized phase Ⅲ clinical trial[J]. J Clin Oncol, 2013, 31(32):4085-4091.
[4] STUPP R, MASON W P, VAN DEN BENT M J, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma[J]. N Engl J Med, 2005, 352(10):987-996.
[5] 薛强. 恶性胶质瘤术后同期推量调强放疗的疗效及其预后影响因素分析[J]. 东南大学学报(医学版), 2016, 35(5):746-751.
[6] MARKOVIC D S, VINNAKOTA K, CHIRASANI S, et al. Gliomas induce and exploit microglial MT1-MMP expression for tumor expansion[J]. Proc Natl Acad Sci U S A, 2009, 106(30):12530-12535.
[7] 刘兆宇, 苏君, 金华, 等. 脑肿瘤微环境影响胶质母细胞瘤侵袭行为的研究进展[J]. 中国神经肿瘤杂志, 2013, 11(2):127-131.
[8] ARCURI C, FIORETTI B, BIANCHI R, et al. Microglia-glioma cross-talk:a two way approach to new strategies against glioma[J]. Front Biosci(Landmark Ed), 2017, 22:268-309.
[9] HANAHAN D, WEINBERG R A. Hallmarks of cancer:the next generation[J]. Cell, 2011, 144(5):646-674.
[10] GABRUSIEWICZ K, ELLERT-MIKLASZEWSKA A, LIPKO M, et al. Characteristics of the alternative phenotype of microglia/macrophages and its modulation in experimental gliomas[J]. PLoS One, 2011, 6(8):e23902.
[11] JOSEPH B, VENERO J L. Microglia:methods and protocols[M]. Totowa, NJ:Humana Press, 2013:3-8.
[12] WU F, LUO T, MEI Y, et al. Simvastatin alters M1/M2 polarization of murine BV2 microglia via Notch signaling[J]. J Neuroimmunol, 2018, 316:56-64.
[13] MURRAY P J, ALLEN J E, BISWAS S K, et al. Macrophage activation and polarization:nomenclature and experimental guidelines[J]. Immunity, 2014, 41(1):14-20.
[14] NIMMERJAHN A. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo[J]. Science, 2005, 308(5726):1314-1318.
[15] PATEL A R, RITZEL R, MCCULLOUGH L D, et al. Microglia and ischemic stroke:a double-edged sword[J]. Int J Physiol Pathophysiol Pharmacol, 2013, 5(2):73.
[16] SAAS P, KAMINSKI S, PERRUCHE S. Prospects of apoptotic cell-based therapies for transplantation and inflammatory diseases[J]. Immunotherapy, 2013, 5(10):1055-1073.
[17] NGAMBENJAWONG C, GUSTAFSON H H, PUN S H. Progress in tumor-associated macrophage(TAM)-targeted therapeutics[J]. Adv Drug Deliv Rev, 2017, 114:206-221.
[18] KOMOHARA Y, OHNISHI K, KURATSU J, et al. Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas[J]. J Pathol, 2008, 216(1):15-24.
[19] ORIHUELA R, MCPHERSON C A, HARRY G J. Microglial M1/M2 polarization and metabolic states[J]. Br J Pharmacol, 2016, 173(4):649-665.
[20] SZULZEWSKY F, PELZ A, FENG X, et al. Glioma-associated microglia/macrophages display an expression profile different from M1 and M2 polarization and highly express Gpnmb and Spp1[J]. PLoS One, 2015, 10(2):e116644.
[21] WU A, WEI J, KONG L, et al. Glioma cancer stem cells induce immunosuppressive macrophages/microglia[J]. Neuro Oncol, 2010, 12(11):1113-1125.
[22] GIERYNG A, PSZCZOLKOWSKA D, WALENTYNOWICZ K A, et al. Immune microenvironment of gliomas[J]. Lab Invest, 2017, 97(5):498-518.
[23] CONIGLIO S J, EUGENIN E, DOBRENIS K, et al. Microglial stimulation of glioblastoma invasion involves epidermal growth factor receptor (EGFR) and colony stimulating factor 1 receptor (CSF-1R) signaling[J]. Mol Med, 2012, 18(1):519-527.
[24] LI X, YAO W, YUAN Y, et al. Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma[J]. Gut, 2016, 66(1):157-167.
[25] MORESCO E M Y, LAVINE D, BEUTLER B. Toll-like receptors[J]. Curr Biol, 2011, 21(13):R488-R493.
[26] SARRAZY V, VEDRENNE N, BILLET F, et al. TLR4 signal transduction pathways neutralize the effect of Fas signals on glioblastoma cell proliferation and migration[J]. Cancer Lett, 2011, 311(2):195-202.
[27] TEWARI R, CHOUDHURY S R, GHOSH S, et al. Involvement of TNFα-induced TLR4-NF-κB and TLR4-HIF-1α feed-forward loops in the regulation of inflammatory responses in glioma[J]. J Mol Med, 2012, 90(1):67-80.
[28] GUPTA P, GHOSH S, NAGARAJAN A, et al. β-defensin-3 negatively regulates TLR4-HMGB1 axis mediated HLA-G expression in IL-1β treated glioma cells[J]. Cell Signal, 2013, 25(3):682-689.
[29] MUKHERJEE S, KARMAKAR S, BABU S P S. TLR2 and TLR4 mediated host immune responses in major infectious diseases:a review[J]. Braz J Infect Dis, 2016, 20(2):193-204.
[30] KAWAI T, AKIRA S. Toll-like Receptors and their crosstalk with other innate receptors in infection and immunity[J]. Immunity, 2011, 34(5):637-650.
[31] CHEN G, YUE Y, QIN J, et al. Plumbagin suppresses the migration and invasion of glioma cells via downregulation of MMP-2/9 expression and inaction of PI3K/Akt signaling pathway in vitro[J]. J Pharma Sci, 2017, 134(1):59-67.
[32] BELKAID A, FORTIER S, CAO J, et al. Necrosis Induction in glioblastoma cells reveals a new "bioswitch" function for the MT1-MMP/G6PT signaling axis in proMMP-2 activation versus cell death decision[J]. Neoplasia, 2007, 9(4):332-340.
[33] ZHENG H, TAKAHASHI H, MURAI Y, et al. Expressions of MMP-2, MMP-9 and VEGF are closely linked to growth, invasion, metastasis and angiogenesis of gastric carcinoma[J]. Anticancer Res, 2006, 26(5A):3579.
[34] CHEN D, PING Y, YU S, et al. Downregulating FPR restrains xenograft tumors by impairing the angiogenic potential and invasive capability of malignant glioma cells[J]. Biochem Biophys Res Commun, 2009, 381(3):448-452.
[35] KIM E S, KIM M S, MOON A. TGF-beta-induced upregulation of MMP-2 and MMP-9 depends on p38 MAPK, but not ERK signaling in MCF10A human breast epithelial cells[J].Int J Oncol, 2004, 25(5):1375-1382.
[36] YE X, XU S, XIN Y, et al. Tumor-associated microglia/macrophages fnhance the invasion of glioma stem-like cells via TGF-β1 signaling pathway[J]. J Immunol, 2012, 189(1):444.
[37] MANTOVANI A, SCHIOPPA T, PORTA C, et al. Role of tumor-associated macrophages in tumor progression and invasion[J]. Cancer Metastasis Rev, 2006, 25(3):315-322.
[38] HULPER P, SCHULZ-SCHAEFFER W, DULLIN C, et al. Tumor localization of an anti-TGF-beta antibody and its effects on gliomas[J]. Int J Oncol, 2011, 38(1):51-59.
[39] WESOLOWSKA A, KWIATKOWSKA A, SLOMNICKI L, et al. Microglia-derived TGF-β as an important regulator of glioblastoma invasion-an inhibition of TGF-β-dependent effects by shRNA against human TGF-β type Ⅱ receptor[J]. Oncogene, 2008, 27(7):918-930.
[40] ZHU C, KROS J M, CHENG C, et al. The contribution of tumor-associated macrophages in glioma neo-angiogenesis and implications for anti-angiogenic strategies[J]. Neuro Oncol, 2017, 19(11):1435-1446.
[41] BRANDENBURG S, MVLLER A, TURKOWSKI K, et al. Resident microglia rather than peripheral macrophages promote vascularization in brain tumors and are source of alternative pro-angiogenic factors[J]. Acta Neuropathol, 2016, 131(3):365-378.
[42] NIJAGUNA M B, SCHRÖDER C, PATIL V, et al. Definition of a serum marker panel for glioblastoma discrimination and identification of Interleukin 1β in the microglial secretome as a novel mediator of endothelial cell survival induced by C-reactive protein[J]. J Proteomics, 2015, 128:251-261.
[43] ALITALO A K, PROULX S T, KARAMAN S, et al. VEGF-C and VEGF-D blockade inhibits inflammatory skin carcinogenesis[J]. Cancer Res, 2013, 73(14):4212.
[44] VAN BEIJNUM J R, NOWAK-SLIWINSKA P, HUIJBERS E J M, et al. The great escape; the hallmarks of resistance to antiangiogenic therapy[J]. Pharmacol Rev, 2015, 67(2):441-461.
[45] PIAO Y, LIANG J, HOLMES L, et al. Glioblastoma resistance to anti-VEGF therapy is associated with myeloid cell infiltration, stem cell accumulation, and a mesenchymal phenotype[J].Neuro Oncol, 2012, 14(11):1379-1392.

服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
提示:您还未登录,请登录!点此登录
您是第 410655 位访问者


copyright ©《东南大学学报(医学版)》编辑部
联系电话:025-83272481 83272483
电子邮件:
bjb@pub.seu.edu.cn

苏ICP备09058364